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Maps for our objects

We want to describe maps between our objects: projective transforma-

tions on projective spaces.

We have defined projective space PV in terms of an equivalence relation on a

vector space as

PV = V \ {0}/(v ∼ λv : λ ∈ F∗).
Natural guess: consider maps of projective spaces induced by linear maps of

vector spaces.

So assume T : V → W is a linear map, and let the rule

τ : [v] 7→ [T (v)]

define a map from PV to PW .



Maps: potential issues

There are two potential problems.

• Q1: Is the map

τ : [v] 7→ [T (v)]

well-defined on PV , i.e. on equivalence classes [v] ∈ PV ?

A1: Yes!

• Q2: Is the map

τ : [v] 7→ [T (v)]

well-defined as a map to PW ?

A2: not necessarily! We need T to be injective.



Projective transformations: the definition

Definition A projective transformation

τ : PV → PW

attached to an injective linear map T : V → W is the map defined by the

rule

τ : [v] 7→ [T (v)].

Special case: the projective transformation

τ : PV → PV

attached to an invertible linear map T : V → V .

Such transformations are automatically invertible themselves: τ−1 is the pro-

jective transformation attached to the linear map T−1.



The group of projective transformations

For a fixed F-vector space V , the projective transformations

τ : PV → PV

form a group:

1. The identity transformation is attached to IdV .

2. These projective transformations are invertible.

3. A composite of two projective transformations is a projective transforma-

tion.

4. Composition is automatically associative.

Thus, to every projective space PV , we have attached the group

PGL(V ) = {τ : PV → PV a projective transformation}.



The group of projective transformations on the projective line

Example Let V = F2, so PV = FP1.

The linear map T : F2 → F2 is given by an invertible 2× 2 matrix

A =

(
a b

c d

)
.

We get
τ : FP1 → FP1

[x0 : x1] 7→ [(ax0 + bx1) : (cx0 + dx1)].

We can write this as

[x0/x1 : 1] 7→ [(ax0 + bx1)/(cx0 + dx1) : 1]

at least all the denominators are nonzero, or, using the coordinate x = x0/x1,

[x : 1] 7→ [(ax + b)/(cx + d) : 1].



The group of projective transformations on the projective line

We have τ : [x : 1] 7→ [(ax + b)/(cx + d) : 1].

So if we write
FP1 = {x1 6= 0} t {[1 : 0]}

F t {∞}
we simply get, on the F part,

τ : x 7→ ax + b

cx + d
.

In other words, projective transformations of a projective line are...

...Möbius transformations!



The group of projective transformations on the projective plane

Example Let V = F3, so

PV = FP2 = F2 t L∞
with the “finite” part given by x0 6= 0 and L∞ = {x0 = 0}.
Let τ : FP2 7→ FP2 be given by a special matrix(

1 0

b A

)
with b ∈ F2 and A an invertible 2× 2 matrix. Then an easy calculation gives,

for x = (x1, x2) ∈ F2,

[1 : x] 7→ [1 : Ax + b].

In other words, projective transformations include...

...affine linear transformations!

Remark It is not hard to show (exercise!) that these are all the projective

transformations of FP2 mapping L∞ to itself.



The structure of the group of projective transformations

We have

PV = V \ {0}/(v ∼ λv : λ ∈ F∗).
Proposition We also have

PGL(V ) = GL(V )/(T ∼ λT : λ ∈ F∗).

Proof It is clear that T, λT define the same map

[v] 7→ [T (v)] = [(λT )(v)]

on PV .



The structure of the group of projective transformations

Proposition

PGL(V ) = GL(V )/(T ∼ λT : λ ∈ F∗).
Proof continued Conversely, suppose T1, T2 ∈ GL(V ) define the same map

on PV , so

[T1(v)] = [T2(v)] for all v ∈ V.
Take v, w ∈ V linearly independent. Then there are constants λ, µ, ν ∈ F∗
with

T2(v) = λT1(v)

T2(w) = µT1(w)

T2(v + w) = νT1(v + w).

We get

0 = (λ− µ)T1(v) + (λ− ν)T1(w).

By linear independence of v, w and invertibility of T1, we get λ = µ = ν.



The structure of the group of projective transformations

Proposition

PGL(V ) = GL(V )/(T ∼ λT : λ ∈ F∗).
Proof concluded So for every vector v, we get

T2(v) = λT1(v)

with a fixed constant λ ∈ F∗. So

T2 = λT1 with λ ∈ F∗.

�



The structure of the group of projective transformations

For group theorists Recall that the centre of the General Linear Group is

Z(GL(V )) = F∗ · IdV .

Perhaps this is more familiar as the slogan a matrix that commutes with

all other (invertible) matrices is (invertible) constant diagonal.

We see that we can view

PGL(V ) ∼= GL(V )/Z(GL(V ))

as the quotient group of the General Linear Group of V by its centre.

Example For F = Fp, we get very interesting finite groups in this way.

One of these, PSL(2,F7) is a non-abelian finite simple group of order 168, the

second smallest possible after A5 of order 60.



The action of Möbius transformations

Recall: the group of Möbius transformations acts triply transitively on the

set C t∞.

Namely, given any z0, z1, z2 ∈ C∞ and w0, w1, w2 ∈ C∞ distinct complex

numbers (including infinity), there is a unique Möbius transformation ϕ with

ϕ(zi) = wi.

One proof proceeds via the special case w0, w1, w2 = 0, 1,∞ in which case ϕ

can be written down “by hand”:

ϕ(z) =
z1 − z2
z1 − z0

z − z0
z − z2

.

The same argument gives the same result for an arbitrary field F.

Proposition The group PGL(F2) acts sharply triply transitively on FP1.

That is, given any two triples p0, p1, p2 ∈ FP1 and q0, q1, q2 ∈ FP1 of distinct

points, there exists a unique τ ∈ PGL(F2) with

τ (pi) = qi.



Points in general position

We want a higher-dimensional generalization of the condition that a triple of

points p0, p1, p2 ∈ FP1 should consist of distinct points.

Definition In an n-dimensional projective space P(V ) for an (n+1)-dimensional

vector space V over F, we say that (n+ 2) points p0, . . . , pn+1 are in general

position, if each subset of n + 1 of these points is represented by linearly

independent representative vectors.

In the language of the projective span, we can translate this linear algebraic

condition into the requirement that each subset of n+ 1 of these points should

have P(V ) as their projective span.

As a subset of a linearly independent set is also linearly independent, we see

that the condition is also equivalent to the following: every k + 1-subset of

p0, . . . , pn+1 should span a k-dimensional projective subspace for k ≤ n.

For n = 2, the condition means that for three points p0, p1, p2 on FP1, each

two should span the whole line, which means that they should be distinct.



General position theorem

Theorem (General Position Theorem) Let p0, . . . , pn+1, respectively

q0, . . . , qn+1 be two (n + 2)-tuples of points in n-dimensional projective space

P(V ), with both (n + 2)-tuples in general position.

Then there exists a unique projective transformation τ ∈ PGL(V ) such that

τ (pi) = qi

for each i.

Proof (existence) Let pi = [vi] for i = 0, . . . , n + 1.

The general position hypothesis implies that v0, . . . , vn form a basis for the

vector space V . Then for the last vector, we have

vn+1 =

n∑
i=0

λivi

for some scalars λi.



General position theorem

Proof (existence continued) Now, all λi are nonzero, again using the

general position hypothesis: if one were to be zero, then we would get a depen-

dency relation between vn+1 and n of the other vi. So we may replace vi by

λivi and take

vn+1 =

n∑
i=0

vi

as representative vector for our last point. Again using the general position

hypothesis, this representation of vn+1 is unique.

Similarly we can take qi = [wi] for i = 0, . . . , n + 1, with

wn+1 =

n∑
i=0

wi,

where w0, . . . , wn is another basis of V .



General position theorem

Proof (existence continued) There exists an invertible linear transfor-

mation T of the (n + 1)-dimensional space V with

T (vi) = wi

for i = 0, . . . , n. Linearity and the formulae for vn+1, wn+1 imply that

T (vn+1) = wn+1

also. We deduce that the attached projective transformation indeed maps

τ (pi) = qi

for each i.



General position theorem

Proof (uniqueness)

If S is another linear transformation inducing a projective transformation with

the required property, then

Svi = µiwi

for i = 0, . . . , n + 1, where µi are nonzero scalars. Now

µn+1wn+1 = Svn+1 =

n∑
i=0

Svi =

n∑
i=0

µiwi,

so wn+1 =
∑n

i=0(µi/µn+1)wi.

By uniqueness of this representation we see all the µi are equal to some constant

µ ∈ F∗.
Hence S = µT and they induce the same projective map. �



General position theorem: examples

Example For n = 2, we recover the result that PGL(F2) acts sharply triply

transitively on FP1: any two triples of distinct points are projectively equivalent

by a unique projective transformation.

Example Consider n = 3. General position for a quadruple p0, p1, p2, p3 of

points of FP2 means: no three points lie on a line.

So we get the result that on the projective plane, any two proper quadran-

gles are projectively equivalent by a unique projective transformation.

Recall that in Euclidean geometry, we have squares, rhombi, deltoids, rectan-

gles, trapeziums, parallelograms, convex and concave quadrangles... all these

differences disappear in the geometry of the projective plane.



Choosing adapted coordinates

Corollary of the proof Given p0, . . . , pn+1 in n-dimensional projective

space P(V ) in general position, there exists a coordinate system on P(V ) in

which the coordinates of the points are

p0 = [1 : 0 : 0 : . . . : 0 : 0]

p1 = [0 : 1 : 0 : . . . : 0 : 0]

· · ·
pn = [0 : 0 : 0 : . . . : 0 : 1]

pn+1 = [1 : 1 : 1 : . . . : 1 : 1]

This is very useful in computational arguments.



Adapted coordinates on the projective line



Adapted coordinates on the projective plane


