BO1 History of Mathematics Lecture I Introduction Part 3: Ancient Greek mathematics

MT 2020 Week 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Earliest origins of Greek mathematics in 6th century BC

But what do we mean by 'Greek'?

500 BC - 300 BC Collection of city-states in Greece

300 BC – AD 500 Greek-speaking peoples around the Mediterranean, especially in Alexandria

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some major figures of 'Greek' mathematics

| Pythagoras | Samos (Greece)?     | c. 600 BC           |
|------------|---------------------|---------------------|
| Euclid     | Alexandria (Egypt)? | c. 300 (or 250?) BC |
| Archimedes | Syracuse (Sicily)   | c. 250 BC           |
| Apollonius | Perga (Turkey)      | c. 180 BC           |
| Diophantus | Alexandria (Egypt)  | c. AD 200           |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Euclid's *Elements*

The 'elements of geometry' in 13 books, compiled around 300 (250?) BC from existing geometrical knowledge

| Books I–VI  | plane geometry        | points, lines, angles,<br>circles,                |
|-------------|-----------------------|---------------------------------------------------|
| Books VII–X | properties of numbers | odd, even, square,<br>triangular, prime, perfect, |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Books XI–XIII solid geometry cube, tetrahedron, icosahedron, ...

## Euclid's Elements

The 'elements of geometry' in 13 books, compiled around 300 (250?) BC from existing geometrical knowledge

| Books I–VI | plane geometry | points, lines, angles, |  |
|------------|----------------|------------------------|--|
|            |                | circles,               |  |

Books VII–X properties of numbers odd, even, square, triangular, prime, perfect, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Books XI–XIII solid geometry cube, tetrahedron, icosahedron, ...

David Joyce's Java version of Euclid's Elements

Oliver Byrne's colour version of the first six books

23 definitions: point, line, surface, angle, circle, ...

5 postulates: what one can do e.g. a straight line may be drawn between any two points; a circle may be drawn with given centre and radius

5 'common notions': how one may reason e.g. if equals are added to equals, then the wholes are equal

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

48 propositions: each built only on what has gone before

## The influence of Euclid's Elements



HUGE influence on Western mathematics:

- hundreds of editions and translations from renaissance onwards
- basis of mathematics teaching in schools until c. 1960
- style: definitions—axioms theorems—proofs
- status of 'Parallel Postulate' led to much investigation and, ultimately, non-Euclidean geometries
- problems of 'ruler and compass' construction inspired much investigation and many new discoveries
- wider cultural importance: http://readingeuclid.org/

- Archimedes d. 212 BC: method of exhaustion and much else
- Apollonius c. 180 BC: conic sections
- Diophantus c. AD 250: Arithmetica in 13 books (number problems)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Also had HUGE influence on Western mathematics