BO1 History of Mathematics Lecture II Dissemination and development (AD 500 – AD 1600) Part 1: Transmission of mathematics from the ancient world

MT 2020 Week 1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

Part 1

- Influence of the ancient world
- ▶ The Renaissance (15th and 16th centuries)
- The 16th century

Part 2

A case study: Napier's invention of logarithms 1614

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Remnants of the collapse of the ancient world

- in Greek: manuscripts preserved at Constantinople and in libraries or collections around the Mediterranean
- in Latin: writings by Boethius (c. 480–524) on philosophy, arithmetic, geometry, music

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The spread of Islam and Islamic learning

- 632–732: Islam spreads throughout Middle East, north Africa, and into Spain and Portugal
- c. 820: Bayt al-Ḥikma, the House of Wisdom, founded in Baghdad under Caliph al-Ma'mūn; it became a centre for translation into Arabic from Greek, Persian, Sanskrit
- c. 825: al-Khwārizmī active in Baghdad
- 9th century: texts on arithmetic, algebra, astronomy reach Spain

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

12th century: translations from Arabic to Latin

Oxford in the 14th century

The Merton School, a.k.a. the Merton Calculators (principally, Thomas Bradwardine, William Heytesbury, Richard Swineshead, John Dumbleton):

arithmetic using Hindu-Arabic numerals

translations of Euclid (some partial)

possibly a little algebra

computus texts (calculation of time)

astronomy and astrology

http://www.oxforddnb.com/view/theme/95034

The mid-Renaissance (15th and 16th centuries)

Classical mathematical texts more widely available due to:

- rediscovery of manuscripts
- revival of knowledge of Greek
- (Western) invention of printing (Gutenberg, c. 1436)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Euclid's *Elements*: transmission history

- commentaries written by Pappus (c. AD 320), Theon (c. AD 380), Proclus (c. AD 450)
- ▶ a few propositions in Boethius (c. AD 500)
- copies in Greek (earliest from Constantinople, AD 888)
- many translations or commentaries in Arabic (AD 750–1250)
- mediaeval translations from Arabic to Latin: Adelard of Bath (1130), Robert of Chester (1145), Gerard of Cremona (mid-12th century)
- printed editions in Latin or Greek from 1482 onwards

Euclid in Arabic

تابيت ان نَقَدِ قَطْعَ خُطُ الْطُوبَرُدَبِ سَمْعَ فللحذيق عراله الشتركعفي ودفعك چودلک مَاارَدْنَا جبذكابة المحصط متتاويد الأستخد قَالَ ثَابِتُ وَجَدِيَا فِي مِنْ الْمُتَّجَالَ: إِنَّ برمانا اخر فعوانا في الآلة الم والفطة . و بدونفش خطر د به داخه انقطة مونج مزنقج -isbeh مراجعة كالعطاد وحشاجع برزجوقاعة وَيْ مَسْرِ مَاهِ إِنْ فَأَوْ لَكَرْ نِعْظَةً مَنْزَكْرُ وَابِنَ الْجِدُفَانَ للفلكاز تراد مانقطة طاز المزخل وتصاح عتقح فزاوية درج سازاوية بزح فهمااندف

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Translated from the Greek by Ishaq ibn Hunayn, AD 1466

Euclid I.47 from Bodleian ms. dated 888

ヘロト 人間ト 人間ト 人間ト

Whole manuscript is digitised: http://www.claymath.org/library/historical/euclid/

Euclid I.47 from Bodleian ms. dated 888

http://www.claymath.org/library/historical/euclid/files/elem.1.47.html

Treatises by Archimedes: transmission history

- quoted or explained by Pappus (c. 320 AD), Theon (c. 380 AD), Eutocius (c. 520 AD)
- 6th-century Byzantine 'collected works' (Isidore of Miletus)

- several translations of individual treatises into Arabic
- translations from Arabic into Latin
- a new find in the twentieth century: www.archimedespalimpsest.org/

Netz & Noel: The Archimedes Codex

(Weidenfeld & Nicolson, 2007)

The Archimedes palimpsest

The Archimedes palimpsest

Apollonius' Conics (c. 180 BC): transmission history

Books I–IV survived in Greek

Books V–VII survived only in Arabic

Book VIII is lost, known only from commentaries

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

early (Latin) printed edition, 1566

(See: Mathematics emerging, §1.2.4.)

Apollonius, Oxford, 1710

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

New forces at work in the 16th century:

global exploration

growth of international commerce

 new technology (in printing, shipping, military engineering, instrumentation, etc.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simon Stevin (1548-1620), Leiden

Under the patronage of Maurice of Nassau, Prince of Orange, Stevin wrote on:

- accounting (1581)
- tables of interest (1582)
- geometry (1583)
- decimal fractions (1585)
- arithmetic (1585)
- weight and hydrostatics (1586)
- algebra (1594)
- fortification (1594)
- navigation (1599)

- mathematics (1608), including cosmography, geography, tides, heavenly motions, optics, perspective, refraction (Snell's law), pulleys, floating bodies, bookkeeping
- locks and sluices (1617)

Thomas Harriot (1560–1621), London

Under the patronage of the Earl of Northumberland, Harriot worked on:

- navigation
- optics, refraction (Snell's law)
- rates of fall
- calculations of density
- alchemy
- geometry
- algebra
- astronomy

none of it published

Harriot papers online: http://echo.mpiwgberlin.mpg.de/content/scientific_revolution/harriot

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ