BO1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of 'rigour' Part 1: Publication, acceptance, and successes

MT 2020 Week 3

Summary

Part 1

- Publication and acceptance of the calculus
- Some successes of the calculus

Part 2

Functions

Part 3

- Problems with the calculus
- Some responses: beginnings of 'rigour' in Analysis

Reminder: a comparison from lecture IV

Newton (1664–65): Leibniz (1673–76):

rules for quadrature rules for tangents 'fundamental theorem' rules for quadrature rules for tangents 'fundamental theorem'

dot notation

'modern' notation

physical intuition: rates of change

algebraic intuition rules and procedures

PROBLEM:

PROBLEM:

vanishing quantities o

vanishing quantities du, dv, ...

1669: 'De analysi' shown to Barrow and Collins

1669: 'De analysi' shown to Barrow and Collins

1671: 'Treatise on fluxions and infinite series' withdrawn

before publication

1669: 'De analysi' shown to Barrow and Collins

1671: 'Treatise on fluxions and infinite series' withdrawn

before publication

1676: two long letters to Leibniz, plus a coded message

1669: 'De analysi' shown to Barrow and Collins

1671: 'Treatise on fluxions and infinite series' withdrawn

before publication

1676: two long letters to Leibniz, plus a coded message

1685: partial publication of the letters to Leibniz by Wallis

in his *Treatise of algebra*

1669: 'De analysi' shown to Barrow and Collins

1671: 'Treatise on fluxions and infinite series' withdrawn

before publication

1676: two long letters to Leibniz, plus a coded message

1685: partial publication of the letters to Leibniz by Wallis

in his *Treatise of algebra*

1693: further partial publication by Wallis in his

Opera mathematica

1669: 'De analysi' shown to Barrow and Collins

1671: 'Treatise on fluxions and infinite series' withdrawn before publication

1676: two long letters to Leibniz, plus a coded message

1685: partial publication of the letters to Leibniz by Wallis

in his *Treatise of algebra*

1693: further partial publication by Wallis in his Opera mathematica

1704: 'Treatise of quadrature' appended to published Opticks

Newton's coded message

CUL MS Add.3977 f. 3r

Letter from Isaac Newton to Henry Oldenburg, 24 October 1676 ('Epistola posterior')

"The foundation of these operations is evident enough, in fact; but because I cannot proceed with the explanation of it now, I have preferred to conceal it thus: 6accdae13eff7i3l9n4o4qrr4s8t12vx."

Newton's coded message

CUL MS Add.3977 f. 3r

Letter from Isaac Newton to Henry Oldenburg, 24 October 1676 ('Epistola posterior')

"The foundation of these operations is evident enough, in fact; but because I cannot proceed with the explanation of it now, I have preferred to conceal it thus: 6accdae13eff7i3/9n4o4qrr4s8t12vx."

"Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire: et vice versa."

= "Given an equation involving any number of fluent quantities, to find the fluxions: and vice versa."

Leibniz's publication of his calculus

1680s: Papers in Acta eruditorum (journal founded 1682)

Leibniz's publication of his calculus

1680s: Papers in Acta

eruditorum (journal

founded 1682)

1691: Bernoulli brothers

(Johann and Jacob) begin to apply

Leibniz's publication of his calculus

1680s: Papers in Acta

eruditorum (journal

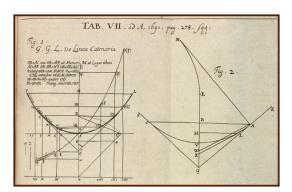
founded 1682)

1691: Bernoulli brothers

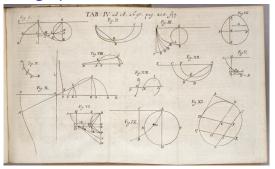
(Johann and Jacob)
begin to apply
Leibniz' methods

Leibniz' methods

1696: Exposition by

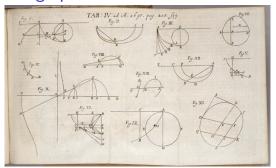

L'Hôpital based on teachings of

Johann Bernoulli


1687: Isochrone — curve of uniform descent (posed by Leibniz; solved by Jacob Bernoulli)

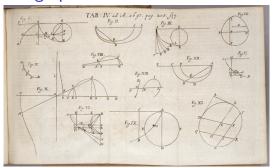
1687: Isochrone — curve of uniform descent (posed by Leibniz; solved by Jacob Bernoulli)

1691: Catenary — curve of a hanging chain (posed by Jacob Bernoulli; solved by Johann Bernoulli, Huygens, Leibniz)



Leibniz' and Huygens' solutions, *Acta eruditorum*, 1691.

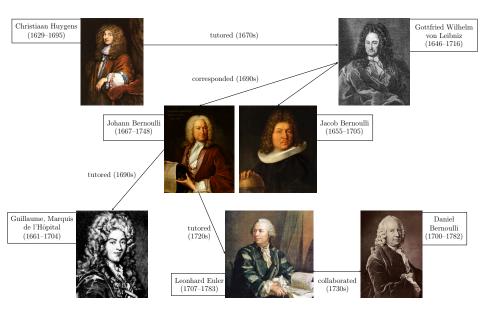
Solutions by Johann & Jacob Bernoulli, l'Hospital, and Newton, *Acta eruditorum*, 1696.


1696: Brachistochrone — curve of fastest descent (posed by Johann Bernoulli; shown to be cycloid by Jacob Bernoulli, Leibniz, Newton, l'Hôpital)

Solutions by Johann & Jacob Bernoulli, l'Hospital, and Newton, *Acta eruditorum*, 1696.

1696: Brachistochrone — curve of fastest descent (posed by Johann Bernoulli; shown to be cycloid by Jacob Bernoulli, Leibniz, Newton, l'Hôpital)

1697: Isoperimeter problems — find curve of given length that maximises a certain integral (classical problem; variant posed by Jacob Bernoulli, solved by him 1701)



Solutions by Johann & Jacob Bernoulli, l'Hospital, and Newton, *Acta eruditorum*, 1696.

1696: Brachistochrone — curve of fastest descent (posed by Johann Bernoulli; shown to be cycloid by Jacob Bernoulli, Leibniz, Newton, l'Hôpital)

1697: Isoperimeter problems — find curve of given length that maximises a certain integral (classical problem; variant posed by Jacob Bernoulli, solved by him 1701)

People and connections

Leonhard Euler (1707–1783): a major 18th-century figure 1707: Euler born in Basel

1707: Euler born in Basel

1720: attended University of Basel, taught by Johann Bernoulli

1707: Euler born in Basel

1720: attended University of

Basel, taught by Johann

Bernoulli

1727: left Basel for Saint

Petersburg with Daniel

Bernoulli

1707: Euler born in Basel

1720: attended University of

Basel, taught by Johann

Bernoulli

1727: left Basel for Saint

Petersburg with Daniel

Bernoulli

1741: invited to Frederick the

Great's new Academy in

Berlin

1707: Euler born in Basel

1720: attended University of

Basel, taught by Johann

Bernoulli

1727: left Basel for Saint

Petersburg with Daniel

Bernoulli

1741: invited to Frederick the

Great's new Academy in

Berlin

1766: returned to St Petersburg

1707: Euler born in Basel

1720: attended University of

Basel, taught by Johann

Bernoulli

1727: left Basel for Saint

Petersburg with Daniel

Bernoulli

1741: invited to Frederick the

Great's new Academy in

Berlin

1766: returned to St Petersburg

1783: died in St Petersburg

Influence of the challenge problems

These challenge problems and others helped to

Influence of the challenge problems

These challenge problems and others helped to

consolidate and validate Leibnizian calculus

Influence of the challenge problems

These challenge problems and others helped to

- consolidate and validate Leibnizian calculus
- introduce new questions about 'functions', 'differentiability', 'continuity', ...