BO1 History of Mathematics
Lecture VII
Infinite series
Part 3: The 18th century
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Move on to the 18th century

Eighteenth century:
P> as in 17th century, much progress;

P also many questions and doubts
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(See: Mathematics emerging, §8.2.1.)
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Taylor denoted a small change in x by x (our dx), a small change in x by

x (our §(6x)), and so on

Dependent variable x; independent variable z increases uniformly with
time

X increases to x + dx in time §t; after a further interval of dt, x has
become x 4 dx + §(x + 0x) = x + 20x + §(dx); continuing:
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Taylor series

Taylor denoted a small change in x by x (our dx), a small change in x by

x (our §(6x)), and so on

Dependent variable x; independent variable z increases uniformly with
time

X increases to x + dx in time §t; after a further interval of dt, x has
become x 4 dx + §(x + 0x) = x + 20x + §(dx); continuing:

X+ 0x+ 20— L g5 4 M= D0 = 2) 1.12)(."3_ 2

- 3(3(8x)) + -+

J néz(n—1)0z

= x+5x—z+5(6x)7+5(6(§x))
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1-2-3(0z)
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b B0+ 0(50) 90 0 (o) e 20

16z

Assumptions:

» (n— k)dz =~ ndz, since 0z is small, so replace each (n — k)dz by v,
a constant

» dx o< x and 6z  z, so in each case the former can be replaced by
the latter

. ox dx 6(6x)  d?x
In essence (in modern terms): 57 — b (02)? — 2 and so on
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Assumptions:

» (n— k)dz =~ ndz, since 0z is small, so replace each (n — k)dz by v,
a constant

» dx o< x and 6z  z, so in each case the former can be replaced by
the latter
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In essence (in modern terms):

Again in modern terms, we arrive at:
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Cf. Taylor's notation in Mathematics Emerging, §8.1.2



Maclaurin's Treatise of fluxions, vol. Il, p.610

Suppose that y can be expressed as
A+ Bz+ Cz°+Dz> + - --
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Suppose that y can be expressed as
A+ Bz+ Cz°+Dz> + - --

When z vanishes, y = E, y = E,
y:Ey:E and so on

z is assumed to flow uniformly, so
that z = const

By repeatedly taking fluxions, we
may calculate in turn: A = E,

B=Ez C= D= etc.

222' 623’

“the law of the continuation of [the]
series is manifest”

(Mathematics emerging, §8.2.2.)
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Euler's Introductio

Incorporated power series into the definition of a function:
A function of a variable quantity is an analytic expression
composed in any way whatsoever of the variable quantity
and numbers or constant quantities.

Euler derived series for sine, cosine, exp, log, etc.;

he also discovered relationships between them, for example:

1 . .
cos v = E(e"’ +e ")



An application of series

- Abraham de Moivre posed this
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Abraham de Moivre posed this
problem about confidence intervals:

What are the Odds that after a
certain number of Experiments have
been made concerning the
happening or failing of Events, the
Accidents of Contingency will not
afterwards vary from those of
Observation beyond certain Limits?

His answer involved clever (but
non-rigorous) summation and
manipulation of infinite series.

(Mathematics emerging, §7.1.3.)



Doubts

D’Alembert, 1761:
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D’Alembert, 1761:

. all reasoning and calculation
based on series that do not
converge, or that one may
suppose not to, always seems to
me extremely suspect, even when
the results of this reasoning agree
with truths known in other ways.

Introduced, without proof, what
came to be known (in a more
general setting) as d'Alembert’s
ratio test.

(See: Mathematics emerging,
§8.3.1.)



Lagrange's use of series

J.-L. Lagrange, Théorie des
fonctions analytiques (1797)

Lagrange's use of series: an
attempt to liberate calculus
from infinitely small quantities
(essentially by treating only
those functions that may be
described by power series)

JE SERON R TR
DES FONCTIONS ANALYTIQUES

CONTENAN

LES PRINCIPES DU CALCUL DIFFERENTIEL
D'INFINIMI U D'EY 1
OU DE FLUXION
r
AALANALYSE ALGEBRIQUT
) NTITES F1
GRANC
=
2 recd e



Lagrange and convergence

... |one needs| a way of stopping the expansion of the
series at any term one wants and of estimating the value
of the remainder of the series.

This problem, one of the most important in the theory
of series, has not yet been resolved in a general way

Lagrange found bounds for the ‘remainder’ ...
and applied his findings to the binomial series ...
thus proving what Newton had taken for granted

(See: Mathematics emerging, §8.3.2.)



