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Lecture VIII
Establishing rigorous thinking in analysis
Part 2: Further rigour
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Early definitions of continuity:
Wallis (1656): a curve that doesn't ‘jump about’
Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f(x + w) — f(x) can be made smaller than
any given quantity, provided w can be taken
as small as we please

Cauchy (1821): f(x + a) — f(x) decreases with a

[Question: dependence? plagiarism? or a common source?]
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Limits: early definitions

Wallis (1656): a quantity ‘less than any assignable’
quantity is zero

Newton (1687): adopted and ‘proved’ Wallis's definition;
also used ‘limit" in the sense of a ‘bound’
or ‘ultimate value’;
developed theory of ‘first and last ratios’

D’Alembert (1751): ‘one may approach a limit as closely as
one wishes ... but never surpass it’;
example: polygons and circle;
he assumed that lim AB =Iim A x lim B;
a dictionary definition only — no theory



Limits: a later definition

Cauchy, Cours d’analyse (1821), p. 4:

When the values successively given to a variable approach
indefinitely to a fixed value, so as to finish by differing
from it by as little as one would wish, the latter is called
the limit of all the others.



Limits: a later definition

Cauchy, Cours d’analyse (1821), p. 4:

When the values successively given to a variable approach
indefinitely to a fixed value, so as to finish by differing
from it by as little as one would wish, the latter is called
the limit of all the others.
Examples:
» an irrational number is a limit of rationals;

> in geometry a circle is a limit of polygons.
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Cauchy, Cours d’analyse (1821), p. 4:

When the values successively given to a variable approach
indefinitely to a fixed value, so as to finish by differing
from it by as little as one would wish, the latter is called
the limit of all the others.
Examples:
» an irrational number is a limit of rationals;

> in geometry a circle is a limit of polygons.

BUT still no formal definition of
» ‘as small as one wishes’,

P> ‘as closely as one wishes’, ...



Differentiability: early ideas

For Leibniz and his immediate followers, any ‘function’ you could
write down was automatically differentiable (by the usual rules).



Differentiability: early ideas

For Leibniz and his immediate followers, any ‘function’ you could
write down was automatically differentiable (by the usual rules).

For Lagrange, the ‘Taylor' series
f(x+h)=f(x)+f'(x)h+---
led naturally to consideration of

F(x + h) — F(x)
h

as an approximation to f’(x), for small h



Differentiability: early ideas

For Leibniz and his immediate followers, any ‘function’ you could
write down was automatically differentiable (by the usual rules).

For Lagrange, the ‘Taylor' series
f(x+h)=f(x)+f'(x)h+---
led naturally to consideration of

F(x + h) — F(x)
h

as an approximation to f’(x), for small h

Ampere (1806) struggled with the meaning of

f(x+ h) —f(x)
h

— why isn't it just zero or infinite?
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Differentiability: Cauchy's Résumé

... those who read my book will | hope be convinced that
the principles of the differential calculus and its most im-
portant applications can easily be set out without the use
of series.

Defined the derivative as the limit of

f(x+ h) — f(x)
h

with many particular examples: ax, a/x, sinx, logx, ...
but no concerns about existence in general

(See: Mathematics emerging, §14.1.4.)
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Arbitrarily small intervals

A theorem of Lagrange (1797):

If the first derived function of a function f is strictly posi-
tive on an interval [a, b], then f(b) > f(a).

Proof: Divide the interval [a, b] into n subintervals, taking n as
large as necessary ...

Unconvincing to modern eyes, but a useful technique.

(See: Mathematics emerging, §11.2.3.)



IVT revisited

Cauchy, Cours d’analyse (1821), Note Ill, p. 460 (On the numerical
solution of equations):

Theorem: Let f be a real function of the variable x, which
remains continuous with respect to this variable between the limits
x = xp, x = X. If the two quantities f(xp), f(X) are of opposite
signs, the equation f(x) = 0 will be satisfied by one or more real
values of x contained between xg and X.

(See: Mathematics emerging, §11.2.6.)
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IVT revisited
Cauchy’s proof:

Choose m > 1. Divide the interval [xg, X] into m equal parts; find
neighbouring division points x1, X’ such that f(x;), f(X’) are of
opposite signs. Subdivide the interval [x;, X'] into m equal parts;
find neighbouring division points xp, X" such that f(xz), f(X") are
of opposite signs. Continue in this way to obtain an increasing

sequence X, Xx1,... and a decreasing sequence X, X’,.... The
difference X(") — x, is (X — xg)/m", which may be made as small
as one wishes. The sequences xp, xi,... and X, X’,... therefore

converge to a common limit a, at which f(a) = 0.

Note: Cauchy offered this as a fast method of approximation to
roots of equations.

But it also provides a much more convincing proof of the
Intermediate Value Theorem than that appearing earlier in
Cauchy's text (Cours d’analyse, Ch.Il, Theorem4: p.44).



£ and ¢ appear

A theorem of Cauchy, Résumé (1823):

Suppose that in the interval [xg, X] we have A < f/(x) < B. Then
we also have
F(X) = f(x0)

A
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£ and ¢ appear

A theorem of Cauchy, Résumé (1823):

Suppose that in the interval [xg, X] we have A < f/(x) < B. Then

we also have
f(X) — f(x)

A
< X — xo

<B

Proof: Choose two quantities ¢, 9,... such that for i < §

Fiix)—e < TFDZF0) iy

1

etc.

(See: Mathematics emerging, §14.1.5.)



Hints of a broader class of functions

If a Taylor series exists for a given function, and all the coefficients
vanish, then surely the function itself must vanish ...



Hints of a broader class of functions

If a Taylor series exists for a given function, and all the coefficients
vanish, then surely the function itself must vanish ...

However, Cauchy gave the example f(x) = e + e_X_Q, which is
clearly never zero, but all of its derivatives vanish



Hints of a broader class of functions

If a Taylor series exists for a given function, and all the coefficients
vanish, then surely the function itself must vanish ...

However, Cauchy gave the example f(x) = e + e_X_Q, which is
clearly never zero, but all of its derivatives vanish

So not every function can be expanded into a Taylor series,



Hints of a broader class of functions

If a Taylor series exists for a given function, and all the coefficients
vanish, then surely the function itself must vanish ...

However, Cauchy gave the example f(x) = e + e_X_2, which is
clearly never zero, but all of its derivatives vanish

So not every function can be expanded into a Taylor series, and it
appears to be possible to conceive of functions to which the
calculus is not immediately or naturally applicable ...
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Modern rigour in analysis

Karl Weierstrass (1815-1897):

» taught at University of
Berlin from 1856 onwards

» completed the rigorisation of
calculus via systematic use
of €/6 methods

BUT we have no direct sources,
only lecture notes or books by his
pupils and followers




From France to Germany

By the later 19th century the mathematical centre of gravity in
Europe had moved from the Parisian Ecoles to the German
universities:

Gottingen (est. 1734):  Gauss, Dirichlet, [Dedekind], Riemann,
Klein, Hilbert, ...

Berlin (est.1810): Crelle (editor), Dirichlet, Eisenstein,
Kummer, [Jacobi], Kronecker,
Weierstrass, ...

with a focus on both research and teaching.



