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BO1 History of Mathematics
Lecture VIII

Establishing rigorous thinking in analysis
Part 2: Further rigour

MT 2020 Week 4
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Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Limits: early definitions

Wallis (1656): a quantity ‘less than any assignable’
quantity is zero

Newton (1687): adopted and ‘proved’ Wallis’s definition;
also used ‘limit’ in the sense of a ‘bound’
or ‘ultimate value’;
developed theory of ‘first and last ratios’

D’Alembert (1751): ‘one may approach a limit as closely as
one wishes ... but never surpass it’;
example: polygons and circle;
he assumed that limAB = limA× limB;
a dictionary definition only — no theory
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Wallis (1656): a quantity ‘less than any assignable’
quantity is zero

Newton (1687): adopted and ‘proved’ Wallis’s definition;
also used ‘limit’ in the sense of a ‘bound’
or ‘ultimate value’;
developed theory of ‘first and last ratios’
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Limits: a later definition

Cauchy, Cours d’analyse (1821), p. 4:

When the values successively given to a variable approach
indefinitely to a fixed value, so as to finish by differing
from it by as little as one would wish, the latter is called
the limit of all the others.

Examples:

I an irrational number is a limit of rationals;

I in geometry a circle is a limit of polygons.

BUT still no formal definition of

I ‘as small as one wishes’,

I ‘as closely as one wishes’, ...
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Differentiability: early ideas
For Leibniz and his immediate followers, any ‘function’ you could
write down was automatically differentiable (by the usual rules).

For Lagrange, the ‘Taylor’ series

f (x + h) = f (x) + f ′(x)h + · · ·

led naturally to consideration of

f (x + h)− f (x)

h

as an approximation to f ′(x), for small h

Ampère (1806) struggled with the meaning of

f (x + h)− f (x)

h

— why isn’t it just zero or infinite?
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Differentiability: Cauchy’s Résumé

Cauchy, Résumé des leçons
données à l’École royale
polytechnique sur le calcul
infinitésimal, 1823

(Translation by Dennis
M. Cates, Fairview Academic
Press, 2012)
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Differentiability: Cauchy’s Résumé

. . . those who read my book will I hope be convinced that
the principles of the differential calculus and its most im-
portant applications can easily be set out without the use
of series.

Defined the derivative as the limit of

f (x + h)− f (x)

h

with many particular examples: ax , a/x , sin x , log x , ...

but no concerns about existence in general

(See: Mathematics emerging, §14.1.4.)
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Arbitrarily small intervals

A theorem of Lagrange (1797):

If the first derived function of a function f is strictly posi-
tive on an interval [a, b], then f (b) > f (a).

Proof: Divide the interval [a, b] into n subintervals, taking n as
large as necessary ...

Unconvincing to modern eyes, but a useful technique.

(See: Mathematics emerging, §11.2.3.)
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tive on an interval [a, b], then f (b) > f (a).
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IVT revisited

Cauchy, Cours d’analyse (1821), Note III, p. 460 (On the numerical
solution of equations):

Theorem: Let f be a real function of the variable x , which
remains continuous with respect to this variable between the limits
x = x0, x = X . If the two quantities f (x0), f (X ) are of opposite
signs, the equation f (x) = 0 will be satisfied by one or more real
values of x contained between x0 and X .

(See: Mathematics emerging, §11.2.6.)
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IVT revisited
Cauchy’s proof:

Choose m > 1. Divide the interval [x0,X ] into m equal parts;

find
neighbouring division points x1,X

′ such that f (x1), f (X ′) are of
opposite signs. Subdivide the interval [x1,X

′] into m equal parts;
find neighbouring division points x2,X

′′ such that f (x2), f (X ′′) are
of opposite signs. Continue in this way to obtain an increasing
sequence x0, x1, . . . and a decreasing sequence X , X ′, . . .. The
difference X (n) − xn is (X − x0)/mn, which may be made as small
as one wishes. The sequences x0, x1, . . . and X , X ′, . . . therefore
converge to a common limit a, at which f (a) = 0.

Note: Cauchy offered this as a fast method of approximation to
roots of equations.

But it also provides a much more convincing proof of the
Intermediate Value Theorem than that appearing earlier in
Cauchy’s text (Cours d’analyse, Ch. II, Theorem 4: p. 44).
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Choose m > 1. Divide the interval [x0,X ] into m equal parts; find
neighbouring division points x1,X

′ such that f (x1), f (X ′) are of
opposite signs. Subdivide the interval [x1,X

′] into m equal parts;
find neighbouring division points x2,X

′′ such that f (x2), f (X ′′) are
of opposite signs.

Continue in this way to obtain an increasing
sequence x0, x1, . . . and a decreasing sequence X , X ′, . . .. The
difference X (n) − xn is (X − x0)/mn, which may be made as small
as one wishes. The sequences x0, x1, . . . and X , X ′, . . . therefore
converge to a common limit a, at which f (a) = 0.

Note: Cauchy offered this as a fast method of approximation to
roots of equations.

But it also provides a much more convincing proof of the
Intermediate Value Theorem than that appearing earlier in
Cauchy’s text (Cours d’analyse, Ch. II, Theorem 4: p. 44).
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ε and δ appear

A theorem of Cauchy, Résumé (1823):

Suppose that in the interval [x0,X ] we have A < f ′(x) < B. Then
we also have

A <
f (X )− f (x0)

X − x0
< B

Proof: Choose two quantities ε, δ, . . . such that for i < δ

f ′(x)− ε < f (x + i)− f (x)

i
< f ′(x) + ε

etc.

(See: Mathematics emerging, §14.1.5.)
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Hints of a broader class of functions

If a Taylor series exists for a given function, and all the coefficients
vanish, then surely the function itself must vanish . . .

However, Cauchy gave the example f (x) = e−x
2

+ e−x
−2

, which is
clearly never zero, but all of its derivatives vanish

So not every function can be expanded into a Taylor series, and it
appears to be possible to conceive of functions to which the
calculus is not immediately or naturally applicable . . .
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Modern rigour in analysis

Karl Weierstrass (1815–1897):

I taught at University of
Berlin from 1856 onwards

I completed the rigorisation of
calculus via systematic use
of ε/δ methods

BUT we have no direct sources,
only lecture notes or books by his
pupils and followers
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From France to Germany

By the later 19th century the mathematical centre of gravity in
Europe had moved from the Parisian Écoles to the German
universities:

Göttingen (est. 1734): Gauss, Dirichlet, [Dedekind], Riemann,
Klein, Hilbert, ...

Berlin (est. 1810): Crelle (editor), Dirichlet, Eisenstein,
Kummer, [Jacobi], Kronecker,
Weierstrass, ...

with a focus on both research and teaching.


