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Classical algebra: equation solving
1800BC – AD1800

Part 2: The theory of equations
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Algebra in the 17th century

From 1600 onwards, ‘algebra’ as a set of recipes and techniques
began to diverge in two (linked) directions:

I ‘algebra’ as a tool or a language (a.k.a. ‘analysis’ or the
‘analytic art’)

I ‘algebra’ as an object of study in its own right (the ‘theory of
equations’)
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Descartes on algebra

Polynomials feature in Descartes’ La géométrie (1637),

e.g.:

I one example to show that polynomials can be constructed
from their roots (influenced by Harriot?);

I ‘rule of signs’: the number of positive (‘true’) roots of a
polynomial is at most the number of times that the sign
changes as we read term-by-term; the number of negative
(‘false’) roots is at most the number of successions of the
same sign; for example,

x4 − 4x3 − 19xx + 106x − 120 = 0

has at most 3 positive roots and at most one negative;

I can always make a transformation to remove the
second-highest term.
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Descartes on cubics

Search for roots of a cubic
by examining the factors of
the constant term:

if α is such a factor, test
whether x − α divides the
polynomial.

Examines the example

y6 − 8y4 − 124y2 − 64 = 0
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Descartes on quartics

To solve +x4 ? .pxx .qx .r = 0
(Descartes’ notation),

that is,

x4 ± pxx ± qx ± r = 0 ,

he sought to write the quartic
as a product of two
quadratics. This led him to

y6±2py4+(pp±4r)yy−qq = 0

As in Ferrari’s/Cardano’s
method: a quartic is reduced
to a cubic
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Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and
quartic equations — specifically, general solutions in radicals, i.e.,
solutions constructed from the coefficients of a given polynomial
equation via +, −, ×, ÷,

√
, 3
√

, 4
√

, . . .

NB: A solution in radicals may be constructed by ruler and
compass.

Spoiler: the general quintic equation is not solvable in radicals.

By the 1770s, mathematicians (notably Lagrange) had come to
suspect this, but it was not proved until the 1820s.

So did anything interesting happen in algebra during the 17th and
18th centuries?
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A typical 20th-century view

Luboš Nový, Origins of modern algebra (1973), p. 23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 1770–1, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.

Fair point? Or not?
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Some 17th-century developments: Hudde’s rule (1657)
Published 1659 as an addendum to van
Schooten’s Latin translation of
Descartes’ La géométrie:

x3 − 4xx + 5x − 2 = 0 has a double root
x = 1;

multiply the terms of the equation by
numbers in arithmetic progression:

3x3 − 8xx + 5x = 0 also has a double
root x = 1,

as does −4xx + 10x − 6 = 0.

(Modern form of rule: if r is a double
root of f (x) = 0, then it is a root of
f ′(x) = 0 also.)

See Mathematics emerging, §12.2.2.
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Schooten’s Latin translation of
Descartes’ La géométrie:

x3 − 4xx + 5x − 2 = 0 has a double root
x = 1;

multiply the terms of the equation by
numbers in arithmetic progression:

3x3 − 8xx + 5x = 0 also has a double
root x = 1,

as does −4xx + 10x − 6 = 0.

(Modern form of rule: if r is a double
root of f (x) = 0, then it is a root of
f ′(x) = 0 also.)

See Mathematics emerging, §12.2.2.
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Some 17th-century developments: Tschirnhaus
transformations (1683)

For an equation x3 − px2 + qx − r = 0

I to remove one term put x = y + a
(where a = p/3)

I can we remove both the middle
terms?

I to remove two terms put
x2 = bx + y + a

See Mathematics emerging, §12.2.3.
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An 18th-century development: Newton’s Arithmetica
universalis (1707)

Rules for sums of powers of roots of

xn−pxn−1+qxn−2−rxn−3+sxn−4−· · · = 0

sum of roots = p
sum of roots2 = pa− 2q
sum of roots3 = pb − qa + 3r
sum of roots4 = pc − qb + ra− 4s
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Developments of the 17th and 18th centuries

I Symbolic notation

I Understanding of the structure of polynomials

I . . . of the number and nature of their roots

I . . . of the relationship between roots and coefficients

I . . . of how to manipulate them

I . . . of how to solve them numerically

I The leaving behind of geometric intuition?
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Some 18th-century theory of equations

Recall:

I cubic equations can be solved by means of quadratics

I quartic equations can be solved by means of cubics

The ‘reduced’ or ‘resolvent’ equation:

for cubics, the reduced equation is of degree 2

for quartics, the reduced equation is of degree 3

for quintics, the reduced equation is of degree ?
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Some 18th-century theory of equations

Recall:

I quadratic equations can be solved by means of linear equations

I cubic equations can be solved by means of quadratics

I quartic equations can be solved by means of cubics

The ‘reduced’ or ‘resolvent’ equation:

I for cubics, the reduced equation is of degree 2

I for quartics, the reduced equation is of degree 3

I for quintics, the reduced equation is of degree ?
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Some 18th-century theory of equations

Recall:

I quadratic equations can be solved by means of linear equations
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The ‘reduced’ or ‘resolvent’ equation:

I for cubics, the reduced equation is of degree 2

I for quartics, the reduced equation is of degree 3
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Some 18th-century hypotheses

Euler’s hypothesis (1733):

I for an equation of degree n the degree of the reduced
equation will be n − 1

Bézout’s hypothesis (1764):

I for an equation of degree n the degree of the reduced
equation will in general be n!

I though always reducible to (n − 1)!

I possibly further reducible to (n − 2)!
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Bézout’s hypothesis (1764):

I for an equation of degree n the degree of the reduced
equation will in general be n!

I though always reducible to (n − 1)!

I possibly further reducible to (n − 2)!



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Lagrange’s ‘Réflexions’ 1770/71

J.-L. Lagrange, ‘Réflexions sur la résolution algébrique des
équations’, Berlin (1770/1):

Examined all known methods of solving

I quadratics: the well-known solution

I cubics: methods of Cardano, Tschirnhaus, Euler, Bézout

I quartics: methods of Cardano, Descartes, Tschirnhaus, Euler,
Bézout

seeking to identify a uniform method that could be extended to
higher degree
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A typical 20th-century view revisited

Luboš Nový, Origins of modern algebra (1973), p. 23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 1770–1, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.
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Filling a gap in the history of algebra (2011)

The hitherto untold story
of the slow and halting
journey from Cardano’s
solution recipes to
Lagrange’s sophisticated
considerations of
permutations and
functions of the roots of
equations . . . [Preface]
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From Stedall’s preface:

This assertion . . . from Nový quoted above, betrays yet
another fundamental shortcoming of several earlier ac-
counts, a view that mathematics somehow progresses only
by means of ‘great and significant works’ and ‘substantial
changes’.

Fortunately, the truth is far more subtle and far
more interesting: mathematics is the result of a cumula-
tive endeavour to which many people have contributed,
and not only through their successes but through half-
formed thoughts, tentative proposals, partially worked so-
lutions, and even outright failure. No part of mathematics
came to birth in the form that it now appears in a modern
textbook: mathematical creativity can be slow, sometimes
messy, often frustrating.
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