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From 1600 onwards, ‘algebra’ as a set of recipes and techniques
began to diverge in two (linked) directions:

> ‘algebra’ as a tool or a language (a.k.a. ‘analysis’ or the
‘analytic art’)

> ‘algebra’ as an object of study in its own right (the ‘theory of
equations’)
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Descartes on algebra

Polynomials feature in Descartes’ La géométrie (1637), e.g.:

P one example to show that polynomials can be constructed
from their roots (influenced by Harriot?);

» ‘rule of signs’: the number of positive (‘true’) roots of a
polynomial is at most the number of times that the sign
changes as we read term-by-term; the number of negative
(‘false’) roots is at most the number of successions of the
same sign; for example,

x* —4x3 — 19xx 4+ 106x — 120 = 0

has at most 3 positive roots and at most one negative;

» can always make a transformation to remove the
second-highest term.



Descartes on cubics

Search for roots of a cubic
by examining the factors of
the constant term:

if o is such a factor, test
whether x — o divides the
polynomial.

Examines the example

y® —8y* —124y? —64 =0
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Descartes on quartics

To solve +x* % .pxx.gx.r =0

(Descartes’ notation), that is,
L pxxtagxtr=0,

he sought to write the quartic

as a product of two

quadratics. This led him to

y°o+2py*+(pptar)yy—qq =0

As in Ferrari's/Cardano’s

method: a quartic is reduced
to a cubic
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Summary and a glance ahead

By 1600, general solutions were available for quadratic, cubic and
quartic equations — specifically, general solutions in radicals, i.e.,
solutions constructed from the coefficients of a given polynomial

equation via +, —, X, =+, NI ARVAREE

NB: A solution in radicals may be constructed by ruler and
compass.

Spoiler: the general quintic equation is not solvable in radicals.

By the 1770s, mathematicians (notably Lagrange) had come to
suspect this, but it was not proved until the 1820s.

So did anything interesting happen in algebra during the 17th and
18th centuries?



A typical 20th-century view

Lubo¥ Novy, Origins of modern algebra (1973), p.23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 17701, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.



A typical 20th-century view

Lubo¥ Novy, Origins of modern algebra (1973), p.23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 17701, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.

Fair point? Or not?



Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van
Schooten’s Latin translation of
434 Tomanwis Huppewrr Errst. L Descartes' La géométrie:

quaro, per Methodum fuperits explicatam, maximum
carum communem diviforem ; atque hujus ope zqua-
tionem Propofitam toties divido, quotics id fieri po-
teft.

Exempligratid, proponatur hzc 2quatio x4 xx- §x—100,
in quaduz funt zquales radices. Maultiplico ergo ipfam per A~
rithmeticam Progre(fi qual que, hoc eft, cujusincre-
mentum vel decrementum fit vel 1, vel 2, vel 3, vel alius quili-
bet numerus ; & cujus primus terminus fic vel o, vel 4, vel —
quam o : Itaut fempef ejus ope talis terminus zquationis tolli
poflic, qualem quis voluerit, collocando tantiim fub o o.

Ut i, exempli caus , ultimum ejus terminum auferre velim,
multiplicatio fieri poteftipfius 1 — 4 ¥xef= s x—2 2o
per hanc progreffionem 3. 2. 1. o
fietque 353 =8 xxf-5x * mo.
Maxima autem communis divifor hujus & Propofitz zqua-
tionis &ft ¥ — 1@ a, per quam Propofita bis dividi poteft ; ita
ut ejufdem radices fint 1, 1, & 2.
Sic fi cupiam 174n gquationi: inum auferre ,
tio inftitui poteft ipfius X3 —m 4 XX mp= § X=m2 200
per hanc progreffionem o. 1. 2. 3.
& fit ¥ g xx 10X —6 wo.
Cujus quidem ac Prop quationis maximus
divifory ut antea, eft x — 1 0.
Similiter i 24 terminum tollere lubeat , multiplicatio feri
poteft, hoc pa&o: XV 4 XX~ §X—220 0

=+ 1. O e T,=— 12
& prodibic 3 * —g§x440.
Cujusitem & Propofite maximus communis divifor eft
X w120 0.
Ubi dum , von neceffarium effe; femper uti Pragre G

cujus exceffus fit 1, quanquam ea communiter fic aptima.
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Some 17th-century developments: Hudde's rule (1657)

Published 1659 as an addendum to van
Schooten’s Latin translation of
Descartes' La géométrie:
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quaro, per Methodum fuperits explicatam, maximum
carum communem diviforem ; atque hujus ope zqua-
tionem Propofitam toties divido, quotics id fieri po-

oo . x3 — 4xx 4+ 5x — 2 = 0 has a double root
Exempli gratid,proponatur hzc 2quatio 2w xx4 x— 1200,

in quaduz funt zquales radices. Maltiplico ergo ipfam per A~ X = 1
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tianis &ft ¥ — 100, per quam Propolita bis dividi poreft; ita 3x3 — 8xx + 5x = 0 also has a double
ut ejufdem radices fint 1, 1, &2,
root x =1,

Sic fi cupiam 1740 2 i auferre,
tio inftitui poteft ipfius X3 —m 4 XX mp= § X=m2 200
per hanc progreffionem o. 1. 2. 3.

Coits cuid & fit ¥ g xx 10X —6 wo.
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divilotyutantea, ot 5 1 o as does —4xx + 10x — 6 = 0.

Similiter i 24 terminum tollere lubeat , multiplicatio feri
poteft, hoc pa&o: XV 4 XX~ §X—220 0

I. Qo wmm [ =2
&prodibe m T F =3y, (Modern form of rule: if r is a double

Cujusitem & Propofite maximus communis divifor eft P
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ubi dum , von neceffarium effe; femper uti Pragre G
cujus exceffus fit 1, quanquam ea communiter fic aptima. f ! (X) = 0 a |SO.)

See Mathematics emerging, §12.2.2.



Some 17th-century developments: Tschirnhaus
transformations (1683)

ACTA ERUDITORUM
METHODLIS AUFERENDI OMNES Tgg,
minosintermedios ex data aquatione,

per D. T,

X Geometria Dn. Des Cartes notam eft, quaratione femper fecuy,

us terminus o data aquatione pollieauferri quoad pluces e H

o hachemss il inventumeidi n A For an equation x

Iytica, imo non paucos offendi, qui erediderunt, id mull arte per

offe. dam circa hoc i

verum faltem pro iis, qui Artis Analytice apprime gnari, cum iy

tam brevi explicatione vix fatisfieri poffic: reliqua, que hic defiderag
poflent alii cempori refcrvans.

Primo itaque foco,ad hoc attendendum; fitdata aliqua *quatio
cubica X3 pX X, xr=0, in qua x radices hujus aquationis i
gnat; p,q. 6 :ad jam
{ecundum terminum ﬁlppone:urx y+z, jamope harum duarum z.
quationum inveniatur certia, ubi quantitas x abfit , & crit
y! rk3ayysiaaysal=o Penaturnunc (ccundus terminusaqua,

lis nihilo (quia hunc auferre noftra in.
tentio)eritque3ay y—p yy=o. Unde
a=§: id quod indicat, ad auferendun
fecundum terminum in xquatione Cubica, fupponendum effe loco
s<a(prout modo fecimus) x=y»ks. Hac jam vulgata admo.
dum funt, rec hic referuntur aliam ob caufam, quam quia fequenta
adwodumill nt, dumhifcebene intelledis, co facilivs, quz modo
v
Si

3

—px®+gx—r=0

undo in xquatione data auferendi duo termini:
dico, quod fupponendum fit, xx=bxofeyJeas fitres, x3=cx xkbx
sy fi quaior, x#=dx 3k cxxok by ka, atque ficin in
finiwm.  Vocabo autem has eguscioncs affumras , ut cas diftne
guam b zquatione, que uc data confideratur. Ratio autem ho-
Tumelt: qued cadem ratione , prout ope wquationis x=y»a falem
unicus terminys poterat auferri, quia nimirum unica falcem inde-
terminata hic exilic a, fic eadem ratione ope hujus xx=bx ey gd,
nen nifi duo tesmiini poffunt auferri, quia dua indeterminata a &b
adiints
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lytica, imonon pavcos offendi, qui crediderunt, id nulla arte parfg
offe. C dam circa hoc t
verum faltem pro iis, qui Artis Analytica apprime gnari, cum aliy | g —
tam brevi explicatione vix fatisfieri poffit: reliqua, qua hic defiderag; to remove one term pUt X y +a
poffent, alii cempori refcrvans. _
Primo taque foco, ad hoc attendendum; fitdaa aliqua zquaro where a = 1% 3
cubica X3owpxXof:q 1 =0, in qua X radices hujus equationis de.
gnat; p,qnc < ad jam 5
{fecundum terminum ﬁlppunamrx yoka; jam ope harum duarum z.
AR N PR Y AL > can we remove both the middle
y!.l-;.—.yyq-} .\y-x-.ll:o l’uumrmmc(ccundusmmmumquz.
lis nihilo (quia hunc auferre noftra in. terms?
tentio )eritque 3ay y—p y y=o. Unde
-t a=§:id quod indicat, ad auferendum
fecundum terminum in xquatione Cubica, fupponendum effe loco
x=y »ka(prout modo fecimus) x=y . Hac jsm volgata admo-
dum func, rec hic referuntur aliam ob caufom, quam quia fequentia
admodumill nt, demhifce bene intelledlis, eo facilivs, quz modo
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Some 17th-century developments: Tschirnhaus

transformations (1683)

ACTA ERUDITORUM
METHODLIS AUFERENDI OMNES Tgg,

minosintermedios ex data aquatione,
per D. T,

X Geometria Dn. Des Cartes' notam eft, quaratione femper fecyp,

dusterminus ex data quatione poflit auferri; quoad pluces tern;,

hacenus nihilinventum vidi in Arte Ang,

lytica, imonon pavcos offendi, qui crediderunt, id nulla arte parfg

offe.  C dam circa hoc t

verum faltem pro iis, qui Artis Analytica apprime gnari, cum aly

tam brevi explicatione vix fatisfieri poffit: reliqua, qua hic defiderag;
poflent ,alii tempori refcrvans,

Primo itaque oco, ad hoc attendendum; fitdata aliqua xquatip
cubica xh-px o —r=0, in qua x radices hujus zquationis di.
gnat; p,q. 6 :ad jam
fecundum terminum ﬁlppunamrx y+a; jamope harum duarum z.

inveniatur certia, ubi quantitas x abfit, & erit

yhb3ayysksaayskadzo Ponatur nunc fecundus terminusagua,
lis nihilo (quia hunc auferre noftra in.

tentio ) eritque 32y y—p y y=o. Unde
—r a=§:id quod indicat, ad aufer:ndum
quatione Cubica, fupponcndum effe loco
ecimus) x=y s, Hac jam valgata admo.
dum funt, nec hic referuntur aliam ob uuf:m\, quam quia {equentia
admodumil} nt, demhifce bene intelledlis, eo facilivs, quz modo

Sint jam fecundo in @quatione data auferendi duo termini:
dico,quod fupponendum fit, xx=bxofeyslas fitres, x3=cx xkbx
Ay ra; §i quatuor, x#=dx Tofexokbiofy #ka, atque ficin in
finicum.  Vocabo autem has equscioncs affimtas , ut cas diftin-
xquatione, que ut data confideratur,  Ratio autem ho-

24 cadem rations, prout ope wquationis x=y da fiiem
poterat auferri, quia nimirum unica faltem inde-
terminata hic exilic a, fic eadem ratione ope hujus xx=bx ey gd,
wen nif duo tormini poffunt auferri, quia dua indeterminatx a &b
adiunt;

3

For an equation x3 — px> + gx —r =0

» to remove one term put x =y + a
(where a = p/3)

» can we remove both the middle
terms?

» to remove two terms put
2=bx+y+a

See Mathematics emerging, §12.2.3.



An 18th-century development: Newton's Arithmetica
universalis (1707)

Newlen, bov Soanes
" Univerfal Arithmetick :
OR, A

TREATISE

oF Rules for sums of powers of roots of
ARITHMETICAL
Compofition and Refolution. x"—px"~ 1—|—qx

To which is added,

Dr. HALLEY’s Method of finding the
Roots of Zquations Arithmetically.

_2—an_3—|-SXn_4—- ..=0

. sum of roots = p
vanflated from the e
T Rooihvon e i resed s sum of roots> = pa—2q

Mr.CuNN.
sum of roots> = pb— qga+3r
sum of roots* = pc—qgb+ra—4s

5 LONDON,

Prnted for J. Sewex at the “Qlobe in Sal
o e e St
xm a,, in Pateromofir Row, and J.OssoRN at the

Ofurd-Zrms in Lamberd-firecs. 1720
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Developments of the 17th and 18th centuries

» Symbolic notation

» Understanding of the structure of polynomials

> ..

. of the number and nature of their roots

. of the relationship between roots and coefficients

. of how to manipulate them

. of how to solve them numerically

» The leaving behind of geometric intuition?
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Some 18th-century theory of equations

Recall:
» quadratic equations can be solved by means of linear equations

» cubic equations can be solved by means of quadratics

» quartic equations can be solved by means of cubics

The ‘reduced’ or ‘resolvent’ equation:
» for cubics, the reduced equation is of degree 2
> for quartics, the reduced equation is of degree 3

» for quintics, the reduced equation is of degree 7
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Some 18th-century hypotheses

Euler's hypothesis (1733):

» for an equation of degree n the degree of the reduced
equation will be n —1

Bézout's hypothesis (1764):

» for an equation of degree n the degree of the reduced
equation will in general be n!

» though always reducible to (n — 1)!
» possibly further reducible to (n — 2)!



Lagrange’s ‘Réflexions’ 1770/71

J.-L. Lagrange, 'Réflexions sur la résolution algébrique des
équations’, Berlin (1770/1):

Examined all known methods of solving
» quadratics: the well-known solution
» cubics: methods of Cardano, Tschirnhaus, Euler, Bézout

» quartics: methods of Cardano, Descartes, Tschirnhaus, Euler,
Bézout

seeking to identify a uniform method that could be extended to
higher degree



A typical 20th-century view revisited

Lubo¥ Novy, Origins of modern algebra (1973), p.23:

From the propagation of Descartes’ algebraic knowledge up
to the publication of the important works of Lagrange [and
others] in the years 17701, the evolution of algebra was,
at first glance, hardly dramatic and one would seek in vain
for great and significant works of science and substantial
changes.



Filling a gap in the history of algebra (2011)

Heritage of European Mathematics

The hitherto untold story
of the slow and halting
journey from Cardano’s
solution recipes to
Lagrange’s reflections: Lagrange’s sophisticated
filling a gap in considerations of

the history of algebra permutations and
functions of the roots of
equations . .. [Preface]

Jacqueline Stedall

From Cardano’s
great art to

E uropean Mathematical Society
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From Stedall's preface:

This assertion ... from Novy quoted above, betrays yet
another fundamental shortcoming of several earlier ac-
counts, a view that mathematics somehow progresses only
by means of ‘great and significant works’ and ‘substantial
changes’. Fortunately, the truth is far more subtle and far
more interesting: mathematics is the result of a cumula-
tive endeavour to which many people have contributed,
and not only through their successes but through half-
formed thoughts, tentative proposals, partially worked so-
lutions, and even outright failure. No part of mathematics
came to birth in the form that it now appears in a modern
textbook: mathematical creativity can be slow, sometimes
messy, often frustrating.



