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BO1 History of Mathematics
Lecture XI

19th-century rigour in real analysis
Part 2: Integration

MT 2020 Week 6
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Integration

I Recall that in the 17th century, ‘integration’ was designed for
‘quadrature’, for measuring space or calculating area.

I In the 18th century, ‘integration’ was essentially regarded as
the inverse of differentiation.
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Integration in the 18th century (1)

Leonhard Euler, Foundations of
integral calculus (1768):

Definition 1: Integral calculus is
the method of finding, from a
given relationship between
differentials, a relationship
between the quantities
themselves: and the operation by
which this is carried out is usually
called integration.

(See Mathematics emerging,
§14.2.1.)
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Integration in the 18th century (2)

Corollary 1: Therefore where
differential calculus teaches us to
investigate the relationship between
differentials from a given
relationship between variable
quantities, integral calculus supplies
the inverse method.

Corollary 2: Clearly just as in

Analysis two operations are always

contrary to each other, as

subtraction to addition, division to

multiplication, extraction of roots to

raising of powers, so also by similar

reasoning integral calculus is

contrary to differential calculus.
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Integration in the 18th century (3)

Definition 2: Since the differentiation
of any function of x has a form of this
kind: X dx , when such a differential
form X dx is proposed, in which X is
any function of x , that function whose
differential = X dx is called its integral,
and is usually indicated by the prefix

∫
,

so that
∫
X dx denotes that variable

quantity whose differential = X dx .

Corollary 2: Therefore just as the letter

d is the sign of differentiation, so we

use the letter
∫

as the sign of

integration, and thus these two signs are

mutually contrary to each other, as

though they destroy each other:

certainly
∫
dX = X , . . .
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Integration in the 18th century (4)
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Some 19th-century ideas

Recall that Fourier coefficients are given by
2

π

∫ π

0
φ(x) sin nx dx .

It is not always possible to solve such an integral algebraically.

Fourier (1822): but we can draw the curve of φ(x), and hence that
of φ(x) sin nx , under which there is clearly an area.

Fourier thus returned to the idea of integral as area and influenced
Cauchy almost immediately...
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A theory of definite integrals (1823)

Cauchy’s Résumé, 1823, Lesson 21:

Suppose f (x) continuous between x = x0 and x = X . Choose
x1, x2, . . . , xn−1 between these limits. Define

S = (x1 − x0)f (x0) + (x2 − x1)f (x1) + · · ·+ (X − xn−1)f (xn−1)

[much discussion of dependence on partition followed by]

If the numerical values of the elements are made to decrease
indefinitely by increasing their number, the value of S will become
essentially constant, or in other words, it will finish by attaining a
certain limit which will depend only on the form of the function
f (x) and the boundary values x = x0, x = X given to the variable
x . This limit is what one calls a definite integral.

[further issues connected with uniform convergence]
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Cauchy and integrals

Is it valid to use the symbol
∫

here?
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Cauchy and the Fundamental Theorem of Calculus

If in the definite integral∫ X
x0

f (x) dx one makes one of
the two limits vary, for example
the quantity X , the integral
itself will vary with this
quantity; and if one replaces
the variable limit X by x , there
results a new function of x , . . .
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Cauchy and the Fundamental Theorem of Calculus

Let

F (x) =

∫ x

x0

f (x) dx

be this new function.

Proved that F ′(x) = f (x), and
also that

$′(x) = 0⇒ $(x) = const,

which may be used to show
that if F ′(x) = f (x), then∫ X

x0

f (x) dx = F (X )− F (x0).
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The Fundamental Theorem of Calculus

What is the Fundamental Theorem of Calculus?

I integration is the inverse of differentiation?

I integration ‘as a sum’ is the same as integration ‘by rule’?

I Cauchy’s integration is the same as Euler’s integration?

I 19th-century integration is the same as 18th-century
integration?

I . . .
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I Cauchy’s integration is the same as Euler’s integration?

I 19th-century integration is the same as 18th-century
integration?

I . . .
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Bernhard Riemann (1826–1866)
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Riemann’s integral (1853)

Function f (x) no longer required to be continuous on [a, b].

Take
x1 < x2 < · · · < xn−1. Define δ1 := x1 − a, δ2 := x2 − x1, ...,
δn := b − xn−1. Choose numbers εi between 0 and 1. Then define

S := δ1f (a + ε1δ1) + δ2f (x1 + ε2δ2)

+ δ3f (x2 + ε3δ3) + · · ·+ δnf (an−1 + εnδn)

If this has the property that it comes infinitely close to a fixed
value A when all the δi become infinitely small, then this is the
value of

∫ b
a f (x) dx .

Many variants over the years, all called Riemann integral.
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Lebesgue’s integral (1901)

Considers step functions on subsets that are not necessarily
intervals, thus requiring the notion of a measure (Borel, 1894).

Results in a notion of integral of wider applicability than
Riemann’s; for example:

can integrate highly discontinuous functions, such as the Dirichlet
function:

f (x) :=

{
1 if x is rational;
0 if x is irrational.
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