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BO1 History of Mathematics
Lecture XII

19th-century rigour in real analysis, continued
Part 1: Completeness

MT 2020 Week 6
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Summary

Part 1

I Proofs of the Intermediate Value Theorem revisited

I Convergence and completeness

Part 2

I Dedekind and the continuum

Part 3

I Cantor and numbers and sets

I Where and when did sets emerge?

I Early set theory

I Set theory as a language
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The Intermediate Value Theorem (1)

Bolzano’s criticisms (1817) of existing proofs:

The most common kind of proof depends on a truth bor-
rowed from geometry . . . But it is clear that it is an in-
tolerable offense against correct method to derive truths
of pure (or general) mathematics (i.e., arithmetic, algebra,
analysis) from considerations which belong to a merely ap-
plied (or special) part, namely, geometry.

His own proof includes something close to a proof that Cauchy
sequences converge:

. . . the true value of X [the limit] therefore ... can be de-
termined as accurately as required . . . There is, therefore,
a real quantity which the terms of the series, if it is con-
tinued far enough, approach as closely as desired.

But Bolzano assumed the existence of the limit.
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The Intermediate Value Theorem (2)

Cauchy’s 1st proof (Cours d’analyse, 1821, p. 44) is geometric (though he
didn’t provide a diagram):

The function f (x) being continuous between the limits x = x0,
x = X , the curve which has for equation y = f (x) passes first
through the point corresponding to the coordinates x0, f (x0),
second through the point corresponding to the coordinates
X , f (X ), will be continuous between these two points: and,
since the constant ordinate b of the line which has for equation
y = b is to be found between the ordinates f (x0), f (X ) of the
two points under consideration, the line will necessarily pass be-
tween these two points, which it cannot do without meeting the
curve mentioned above in the interval.

Cauchy’s 2nd proof in a different context (p. 460): a numerical method

for finding roots of equations — tacitly assumes that bounded monotone

sequences of real numbers converge [see Lecture VIII].



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

The Intermediate Value Theorem (2)

Cauchy’s 1st proof (Cours d’analyse, 1821, p. 44) is geometric (though he
didn’t provide a diagram):

The function f (x) being continuous between the limits x = x0,
x = X , the curve which has for equation y = f (x) passes first
through the point corresponding to the coordinates x0, f (x0),
second through the point corresponding to the coordinates
X , f (X ), will be continuous between these two points:

and,
since the constant ordinate b of the line which has for equation
y = b is to be found between the ordinates f (x0), f (X ) of the
two points under consideration, the line will necessarily pass be-
tween these two points, which it cannot do without meeting the
curve mentioned above in the interval.

Cauchy’s 2nd proof in a different context (p. 460): a numerical method

for finding roots of equations — tacitly assumes that bounded monotone

sequences of real numbers converge [see Lecture VIII].



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

The Intermediate Value Theorem (2)

Cauchy’s 1st proof (Cours d’analyse, 1821, p. 44) is geometric (though he
didn’t provide a diagram):

The function f (x) being continuous between the limits x = x0,
x = X , the curve which has for equation y = f (x) passes first
through the point corresponding to the coordinates x0, f (x0),
second through the point corresponding to the coordinates
X , f (X ), will be continuous between these two points: and,
since the constant ordinate b of the line which has for equation
y = b is to be found between the ordinates f (x0), f (X ) of the
two points under consideration, the line will necessarily pass be-
tween these two points, which it cannot do without meeting the
curve mentioned above in the interval.

Cauchy’s 2nd proof in a different context (p. 460): a numerical method

for finding roots of equations — tacitly assumes that bounded monotone

sequences of real numbers converge [see Lecture VIII].



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

The Intermediate Value Theorem (2)

Cauchy’s 1st proof (Cours d’analyse, 1821, p. 44) is geometric (though he
didn’t provide a diagram):

The function f (x) being continuous between the limits x = x0,
x = X , the curve which has for equation y = f (x) passes first
through the point corresponding to the coordinates x0, f (x0),
second through the point corresponding to the coordinates
X , f (X ), will be continuous between these two points: and,
since the constant ordinate b of the line which has for equation
y = b is to be found between the ordinates f (x0), f (X ) of the
two points under consideration, the line will necessarily pass be-
tween these two points, which it cannot do without meeting the
curve mentioned above in the interval.

Cauchy’s 2nd proof in a different context (p. 460): a numerical method

for finding roots of equations

— tacitly assumes that bounded monotone

sequences of real numbers converge [see Lecture VIII].
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for finding roots of equations — tacitly assumes that bounded monotone

sequences of real numbers converge [see Lecture VIII].



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

The need for a deeper understanding (1)

Emergence of rigour in Analysis:

I Bolzano, Rein analytischer Beweis ..., 1817;

I Cauchy, Cours d’analyse, 1821, etc.

By 1821, therefore, attempts to prove the intermediate
value theorem had brought three important propositions
into play:

1. Cauchy sequences are convergent (with an
unsuccessful proof by Bolzano in 1817; accepted
without proof by Cauchy in 1821).

2. A [non-empty ] set of numbers bounded below has a
greatest lower bound (proved by Bolzano in 1817 on
the basis of (1)).

3. A monotonic bounded sequence converges to a limit
(taken for granted by Cauchy in 1821).

(Mathematics emerging, §16.3.1.)
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The need for a deeper understanding (2)

What Bolzano and Cauchy missed: completeness

Completeness of the real number system R in modern teaching:

I non-empty bounded sets of real numbers have least upper
bounds

I monotonic bounded sequences converge

I Cauchy sequences converge

I ...

All equivalent
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Equivalence of formulations of completeness

Bolzano–Weierstrass Theorem: A bounded sequence of real
numbers has a convergent subsequence.

Implicit in Bolzano (1817); explicit in lectures by Karl Weierstrass
(1815–1897) in Berlin 1859/60, 1863/64: a step in proofs from
other definitions of completeness that Cauchy sequences converge.

Modern proofs often use the lemma that every infinite sequence of
real numbers has an infinite monotonic subsequence.

How to incorporate these ideas into analysis in a rigorous way?

All of the above relies upon an intuitive notion of real number —
so perhaps provide a formal definition of these? One that includes
the idea of completeness?
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real numbers has an infinite monotonic subsequence.

How to incorporate these ideas into analysis in a rigorous way?

All of the above relies upon an intuitive notion of real number —
so perhaps provide a formal definition of these? One that includes
the idea of completeness?
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