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New ideas

An idea that emerged as central to Dedekind’s work: that of a set

In fact, naive notions of sets had already appeared all but
unremarked earlier in the nineteenth century

» as Gauss' classes, orders, genera (of binary quadratic forms
with integer coefficients) [see Lecture XIV];

» as Galois' groupes (of permutations and of substitutions);

v

as Cauchy's systemes (of substitutions);

» as Dedekind’s Zahlkorpern (of algebraic numbers).

This is by no means an exhaustive list of examples; see
Mathematics emerging, §18.2 for others.
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Formalisation of the concept of a set

Georg Cantor: series of articles in
Mathematische Annalen, 1879-1883

Final one also published separately as
Grundlagen einer allgemeinen
Mannigfaltigkeitslehre [Foundations of a
general theory of aggregates|, Teubner,
Leipzig, 1883:

By an “aggregate” (Menge) we
are to understand any collec-
tion into a whole (Zusammen-
fassung zu einem Ganzen) M of
definite and separate objects m
of our intuition or our thought.
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Cantor’'s major interest: the continuum (i.e., the set of real
numbers).

How to characterise this set within the collection of all sets? — A
question that Cantor never satisfactorily answered.

Cantor's first great insight regarding sets (1873): infinite sets can
have different sizes.
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Cantor's first proof that the continuum is uncountable

Proposition: Given any sequence of real numbers w1, ws, ws, . ..
and any interval [«, 3], there is a real number in [, ] that is not
contained in the given sequence.

Proof proceeds by construction of a sequence of nested intervals
[, B8] 2 [a1, B1] 2 [z, B2] 2 [z, B3] 2 - --. Cantor considered the
different cases where the sequence terminates or does not, but in
all instances he constructed a real number in the interval that does
not lie in the original sequence.

Next suppose that the continuum is countable, i.e., that the real
numbers may be listed wi,wo, w3, .... But then there is a real
number in any interval [«, 3] that does not belong to this list — a
contradiction.

The more famous diagonal argument came later (1891).
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One-to-one correspondences

Also in the 1874 paper:

The algebraic A numbers are countable — therefore transcendental
numbers exist.

NB: In 1851 Joseph Liouville had already produced a
constructive proof of the existence of transcendental numbers.

Charles Hermite proved in 1873 that e is transcendental.

Proof of the transcendence of 7 was finally accomplished by
Carl Louis Lindemann in 1882.

Cantor to Dedekind (1877): there is a one-to-one correspondence
between a line and the plane — “Je le vois, mais je ne le crois
pas!” ("l see it, but | don't believe it!")
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Developed at the end of the nineteenth century (1878-1897): a
general theory of sets and of transfinite numbers — infinite
cardinals (e.g., #N = Ng, #R = ¢), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly
between Ng and ¢

Power set construction given in 1890: #?(S) — the set of all
subsets of a set S

Cantor’'s Theorem: #2(S) > #S

Further: #2(N) = #R, or 2% = ¢
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die Richard Dedekind, Was sind und

Bahlen? was sollen die Zahlen?
Braunschweig, 1893

B e bi Ak i AR Contains, amongst other things:
— » a definition of infinite sets;

Sweite wnverduverte Nuflage. » an axiomatisation of the
a4 e . natural numbers (soon
simplified by Peano).
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Was sind und was sollen die Zahlen?

Was find uud was follen Also includes a definition of a
e function as a mapping between
Bahlen? sets (p.6):
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i Dedehind, By a mapping of a system S we

el 4 e 14 St 1 e : understand a law according to
— which every determinate element
Bweite unverdnderte Anflage. S Of 5 |S aSSOCIated W|th a

determinate thing which is called
the image of s and is denoted by

Braunfdweig, ¢(S) . .”

Dend unb Berlag von Friedrid) Bieweg und Sofn.
1893,

“Asi 8 avdgunos doudunilen,

)

¥\




Was sind und was sollen die Zahlen?

Extract from William Ewald, From Kant to Hilbert: a source book
in the foundations of mathematics, OUP, 1996, vol. I, p. 790:

The title of Dedekind’s paper is subtle: rigidly translated
it asks ‘What are, and what ought to be, the numbers?’
But sollen here carries several senses—among them, ‘What
is the best way to regard the numbers?’; ‘What is the
function of numbers?; ‘What are numbers supposed to
be?’. But perhaps Dedekind’s title is famous enough to
be left in the original.

W. W. Beman translated the essay under the title The nature and
meaning of numbers (1901).
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(wegen der Aehnlidleit von @) aud) o’ und jedes Glement o'
veridjieden von @ und folglih in 7' enthalten fein; mithin ift
¥Y(T)3T, und da T endlidy ift, fo mup ¥ (7) = T, alfo
M (), U) = T fein. Dieraus folgt aber (nad) 15)

M@, 0 U)=M@T),
b. §. nad) dem Obigen 8’ = S. Aljo ift aud) in. diefem 3111]:
der erforderlije Beweis gefiifet.

§ 6.

Cinfad unendlide Syfteme. Reihe der natitrligen
Bahlen.

71. Gelldrung. Gin Spftem N Beift einfad) unendlid),
wenn e3 eine jolde dfnlihe Abbilbung @ von N in fid felbft
giebt, daf N. al3 Rette (44) eines Glementes eridjeint, weldyes nicht
in @ (N) enthalten ift. 2Wir nennen died Element, dad wir im
Folgenden durd) dad Shmbol 1 beyeidhnen wollen, dag Grund-
element von N und fagen gugleich, das einfad) unendliche Spftem N
fei durd) dieje Abbildung @ geordnet. Behalten wir die friiheren
bequemen Begeidnungen file die BVilder und RKetten bei (§. 4), fo
Bejteht mithin das Wefen eined einfady unendlidhen Syftems N in
der Grifteny einer Abbildung @ von N und eines Glementes 1, die

. ben folgenden Bedingungen «, B, », & genilgen:
« N'3N.
B N=1,
.. Dag Glement .1 ift nidt in N’ entpalten.
8. Die Abbildung o ijt dhnlicy.

Offenbar folgt aus «, 7, &, dap jeded einfac) unendliche
Syftem N wirlid) ein unendliches Spftem ift (64), weil 8 einem
edten. Theile N’ feiner felbft dhnlicy ift.

72. Sap. JIn jedem unendlien Syfteme S ift ein einfady
unendliches Spftem N als Theil enthalten.

Was sind und was sollen die Zahlen?

Written in an explicitly
set-theoretic language

(But with slightly different
notation from ours.)

For a summary, see: Kathryn
Edwards, ‘Richard Dedekind
(1831-1916)', Mathematics
Today 52(1) (Feb 2016)
212-215
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Set theory in our lives

Set theory as an effective language for mathematics:
» Set-builder notation

» Unification of ideas concerning functions and relations



Nicolas Bourbaki (1934-7777)

ACTUALITES SCIENTIFIQUES ET INDUSTRIELLES

1258

N. BOURBAKI FASCICULE XXI11

ELEMENTS
DE MATHEMATIQUE

THEORIE
DES ENSEMBLES

STRUCTURES

HERMANN

Collective of French
mathematicians who set out to
reformulate mathematics on
extremely formal, abstract,
structural lines — the language
of sets has a significant role to

play.


https://www.bourbaki.fr/
https://www.bourbaki.fr/

Nicolas Bourbaki (1934-7777)

ACTUALITES SCIENTIFIQUES ET INDUSTRIELLES
1258

N BOURBAKI  PASGICULE XXII Collective of French
ELEMENTS mathematicians who sTet out to
DE MATHEMATIQUE reformulate mathematics on

extremely formal, abstract,
structural lines — the language

THEORIE f sets h i t role t
DES ENSEMBLES of sets has a significant role to
: play.
STRUCTURES . .
Association des collaborateurs de
Nicolas Bourbaki
m
@y

HERMANN


https://www.bourbaki.fr/
https://www.bourbaki.fr/

SMP /New Math

School Mathematics Project (UK)/New Mathematics (USA):



SMP /New Math

School Mathematics Project (UK)/New Mathematics (USA):

» Response to the launch of Sputnik | in 1957



SMP /New Math

School Mathematics Project (UK)/New Mathematics (USA):

» Response to the launch of Sputnik | in 1957

» Traditional school arithmetic and geometry replaced by
abstract algebra, matrices, symbolic logic, ... — in short,
mathematical topics based on set theory



SMP /New Math

School Mathematics Project (UK)/New Mathematics (USA):

» Response to the launch of Sputnik | in 1957

» Traditional school arithmetic and geometry replaced by
abstract algebra, matrices, symbolic logic, ... — in short,
mathematical topics based on set theory

» Much debate — now usually regarded as a passing fad
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Conclusions

» Our modern perception of real numbers took well over 2000
years to crystallise, with geometric, arithmetic, set-theoretic
intuitions to the fore at different times.

P> The concept of set emerged at about the same time as the
modern concept of real number, 1870-1890.

» This coincidence is no coincidence.



Further reading on the development of analysis

The Origins

A EeTopy S p
A HISTORY of Cauchy's

OF ANALYSIS Rigorous e
S Calculus o
JUDITH V. GRABINER The Real and the
Complex: A History
of Analysis in the
= 19th Century
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