BO1 History of Mathematics Lecture XII 19th-century rigour in real analysis, continued Part 3: Sets

MT 2020 Week 6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

An idea that emerged as central to Dedekind's work:

An idea that emerged as central to Dedekind's work: that of a set

An idea that emerged as central to Dedekind's work: that of a set

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In fact, naive notions of sets had already appeared all but unremarked earlier in the nineteenth century

An idea that emerged as central to Dedekind's work: that of a set

In fact, naive notions of sets had already appeared all but unremarked earlier in the nineteenth century

 as Gauss' classes, orders, genera (of binary quadratic forms with integer coefficients) [see Lecture XIV];

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

An idea that emerged as central to Dedekind's work: that of a set

In fact, naive notions of sets had already appeared all but unremarked earlier in the nineteenth century

- as Gauss' classes, orders, genera (of binary quadratic forms with integer coefficients) [see Lecture XIV];
- as Galois' groupes (of permutations and of substitutions);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An idea that emerged as central to Dedekind's work: that of a set

In fact, naive notions of sets had already appeared all but unremarked earlier in the nineteenth century

- as Gauss' classes, orders, genera (of binary quadratic forms with integer coefficients) [see Lecture XIV];
- as Galois' groupes (of permutations and of substitutions);

as Cauchy's systèmes (of substitutions);

An idea that emerged as central to Dedekind's work: that of a set

In fact, naive notions of sets had already appeared all but unremarked earlier in the nineteenth century

- as Gauss' classes, orders, genera (of binary quadratic forms with integer coefficients) [see Lecture XIV];
- as Galois' groupes (of permutations and of substitutions);

- as Cauchy's systèmes (of substitutions);
- > as Dedekind's Zahlkörpern (of algebraic numbers).

An idea that emerged as central to Dedekind's work: that of a set

In fact, naive notions of sets had already appeared all but unremarked earlier in the nineteenth century

- as Gauss' classes, orders, genera (of binary quadratic forms with integer coefficients) [see Lecture XIV];
- as Galois' groupes (of permutations and of substitutions);
- as Cauchy's systèmes (of substitutions);
- > as Dedekind's Zahlkörpern (of algebraic numbers).

This is by no means an exhaustive list of examples; see *Mathematics emerging*, §18.2 for others.

Formalisation of the concept of a set

Georg Cantor: series of articles in *Mathematische Annalen*, 1879–1883

<ロト <回ト < 注ト < 注ト

Formalisation of the concept of a set

Georg Cantor: series of articles in *Mathematische Annalen*, 1879–1883

Final one also published separately as Grundlagen einer allgemeinen Mannigfaltigkeitslehre [Foundations of a general theory of aggregates], Teubner, Leipzig, 1883:

(日)

Formalisation of the concept of a set

Georg Cantor: series of articles in *Mathematische Annalen*, 1879–1883

Final one also published separately as Grundlagen einer allgemeinen Mannigfaltigkeitslehre [Foundations of a general theory of aggregates], Teubner, Leipzig, 1883:

> By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought.

> > ・ロト ・四ト ・ヨト ・ヨト ・ヨ

How to characterise this set within the collection of all sets?

How to characterise this set within the collection of all sets? — A question that Cantor never satisfactorily answered.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to characterise this set within the collection of all sets? — A question that Cantor never satisfactorily answered.

Cantor's first great insight regarding sets (1873): infinite sets can have different sizes.

Proposition: Given any sequence of real numbers $\omega_1, \omega_2, \omega_3, \ldots$ and any interval $[\alpha, \beta]$, there is a real number in $[\alpha, \beta]$ that is not contained in the given sequence.

Proposition: Given any sequence of real numbers $\omega_1, \omega_2, \omega_3, \ldots$ and any interval $[\alpha, \beta]$, there is a real number in $[\alpha, \beta]$ that is not contained in the given sequence.

Proof proceeds by construction of a sequence of nested intervals $[\alpha, \beta] \supseteq [\alpha_1, \beta_1] \supseteq [\alpha_2, \beta_2] \supseteq [\alpha_3, \beta_3] \supseteq \cdots$. Cantor considered the different cases where the sequence terminates or does not, but in all instances he constructed a real number in the interval that does not lie in the original sequence.

Proposition: Given any sequence of real numbers $\omega_1, \omega_2, \omega_3, \ldots$ and any interval $[\alpha, \beta]$, there is a real number in $[\alpha, \beta]$ that is not contained in the given sequence.

Proof proceeds by construction of a sequence of nested intervals $[\alpha, \beta] \supseteq [\alpha_1, \beta_1] \supseteq [\alpha_2, \beta_2] \supseteq [\alpha_3, \beta_3] \supseteq \cdots$. Cantor considered the different cases where the sequence terminates or does not, but in all instances he constructed a real number in the interval that does not lie in the original sequence.

Next suppose that the continuum is countable, i.e., that the real numbers may be listed $\omega_1, \omega_2, \omega_3, \ldots$. But then there is a real number in any interval $[\alpha, \beta]$ that does not belong to this list — a contradiction.

Proposition: Given any sequence of real numbers $\omega_1, \omega_2, \omega_3, \ldots$ and any interval $[\alpha, \beta]$, there is a real number in $[\alpha, \beta]$ that is not contained in the given sequence.

Proof proceeds by construction of a sequence of nested intervals $[\alpha,\beta] \supseteq [\alpha_1,\beta_1] \supseteq [\alpha_2,\beta_2] \supseteq [\alpha_3,\beta_3] \supseteq \cdots$. Cantor considered the different cases where the sequence terminates or does not, but in all instances he constructed a real number in the interval that does not lie in the original sequence.

Next suppose that the continuum is countable, i.e., that the real numbers may be listed $\omega_1, \omega_2, \omega_3, \ldots$. But then there is a real number in any interval $[\alpha, \beta]$ that does not belong to this list — a contradiction.

The more famous diagonal argument came later (1891).

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Also in the 1874 paper:

Also in the 1874 paper:

The algebraic \mathbbm{A} numbers are countable

Also in the 1874 paper:

The algebraic \mathbbm{A} numbers are countable — therefore transcendental numbers exist.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Also in the 1874 paper:

The algebraic \mathbbm{A} numbers are countable — therefore transcendental numbers exist.

NB: In 1851 Joseph Liouville had already produced a constructive proof of the existence of transcendental numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Also in the 1874 paper:

The algebraic \mathbbm{A} numbers are countable — therefore transcendental numbers exist.

NB: In 1851 Joseph Liouville had already produced a constructive proof of the existence of transcendental numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Charles Hermite proved in 1873 that e is transcendental.

Also in the 1874 paper:

The algebraic \mathbbm{A} numbers are countable — therefore transcendental numbers exist.

NB: In 1851 Joseph Liouville had already produced a constructive proof of the existence of transcendental numbers.

Charles Hermite proved in 1873 that e is transcendental.

Proof of the transcendence of π was finally accomplished by Carl Louis Lindemann in 1882.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Also in the 1874 paper:

The algebraic \mathbbm{A} numbers are countable — therefore transcendental numbers exist.

NB: In 1851 Joseph Liouville had already produced a constructive proof of the existence of transcendental numbers.

Charles Hermite proved in 1873 that *e* is transcendental.

Proof of the transcendence of π was finally accomplished by Carl Louis Lindemann in 1882.

Cantor to Dedekind (1877): there is a one-to-one correspondence between a line and the plane — "Je le vois, mais je ne le crois pas!" ("I see it, but I don't believe it!")

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly between \aleph_0 and c

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly between \aleph_0 and c

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Power set construction given in 1890: $\mathscr{P}(S)$ — the set of all subsets of a set S

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly between \aleph_0 and c

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Power set construction given in 1890: $\mathscr{P}(S)$ — the set of all subsets of a set S

Cantor's Theorem: $\#\mathscr{P}(S) > \#S$

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly between \aleph_0 and c

Power set construction given in 1890: $\mathscr{P}(S)$ — the set of all subsets of a set S

Cantor's Theorem: $\#\mathscr{P}(S) > \#S$

Further: $\# \mathscr{P}(\mathbb{N}) = \# \mathbb{R}$,

Developed at the end of the nineteenth century (1878–1897): a general theory of sets and of transfinite numbers — infinite cardinals (e.g., $\#\mathbb{N} = \aleph_0$, $\#\mathbb{R} = c$), transfinite ordinals, ...

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly between \aleph_0 and c

Power set construction given in 1890: $\mathscr{P}(S)$ — the set of all subsets of a set S

Cantor's Theorem: $\#\mathscr{P}(S) > \#S$

Further: $\#\mathscr{P}(\mathbb{N}) = \#\mathbb{R}$, or $2^{\aleph_0} = c$

Was sind und was sollen die Zahlen?

Was find und was follen die Bahlen?

Bon

Richard Dedekind, ofefior an ber techniden bodiaute an Branniamein

3weite unveränderte Auflage.

Asi & drogwnos downyther.

Braunschweig, Druc und Berlag von Friedrich Bieweg und Sohn. 1893. Richard Dedekind, *Was sind und was sollen die Zahlen?* Braunschweig, 1893

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Was sind und was sollen die Zahlen?

Was find und was follen die Bahlen?

Bon

Richard Dedekind,

3weite unveränberte Auflage.

Asi & ardownos douduntices.

Braunschweig, Drud und Berlag von Friedrich Bieweg und Sohn. 1893. Richard Dedekind, *Was sind und was sollen die Zahlen?* Braunschweig, 1893

Contains, amongst other things:

a definition of infinite sets;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Was find und was follen die Bahlen?

Bon

Richard Dedekind,

weite unveränberte Auflage

Aci & ardownos douduntlier.

 Braunfchweig,

 Drud und Berlag von Friedrich Bieweg und Cohn.

 1893.

 (χ^b)

Richard Dedekind, *Was sind und was sollen die Zahlen?* Braunschweig, 1893

Contains, amongst other things:

- a definition of infinite sets;
- an axiomatisation of the natural numbers (soon simplified by Peano).

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Was find und was follen die Bahlen?

Bon

Richard Dedekind,

weite unveränberte Auflage

Asi & ardewnos derduntiger.

Braunschweig, Drud und Berlag von Friedrich Bieweg und Sohn. 1893. Also includes a definition of a function as a mapping between sets (p. 6):

"By a mapping of a system S we understand a law according to which every determinate element s of S is associated with a determinate thing which is called the *image* of s and is denoted by $\phi(s) \dots$ "

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Extract from William Ewald, *From Kant to Hilbert: a source book in the foundations of mathematics*, OUP, 1996, vol. II, p. 790:

The title of Dedekind's paper is subtle: rigidly translated it asks 'What are, and what ought to be, the numbers?' But sollen here carries several senses—among them, 'What is the best way to regard the numbers?'; 'What is the function of numbers?; 'What are numbers supposed to be?'. But perhaps Dedekind's title is famous enough to be left in the original.

W. W. Beman translated the essay under the title *The nature and meaning of numbers* (1901).

20

(wegen ber Achnlichteit von φ) auch a' und jedes Glement w' verfahlehen von a und folglich in T emthalten fein; mithin ift $\varphi(T) \neq T$, mith do T emthalt ift, for much $\varphi(T) = T$, at so $\mathfrak{A}(a', U') = T$ fein. Hereaus folgt ader (nach 15)

 $\mathfrak{A}(a', a, U') = \mathfrak{A}(a, T),$

d. h. nach dem Obigen S' = S. Also ift auch in diesem Falle der erforderliche Beweis geführt.

§. 6.

Einfach unendliche Shfteme. Reihe der natürlichen Zahlen.

71. Ertlärung, Ein System N heißt einfach unendlich, ivem es eine solche ähnliche Abbildung φ von N in sich sleich giebt, das N als Artte (44) einis Elementset ertigeint, unders nicht in φ (N) enthalten ift. Wir nennen dies Eifenents das wir im Folgenben durch das Symbol 1 bezichnen wollen, das Grundelement von N und lagen zugleich, das einfach unendliche System N is i auch dies Ethöltung φ geord net. Bedalten wir die frühreren bequemen Bezeichnungen für die Bilder und Retten bei (§. 4), so beschieften giben Abbildung φ von N und eines Elements 1, die den sogeinsen Bedeing ungen auch einfach von Systems Bedingungen *«, β, γ, δ* genigen:

α. N'3 N.

 β . $N = 1_{o}$.

7. Das Element 1 ift nicht in N' enthalten.

δ. Die Abbildung φ ift ähnlich.

Offenbar folgt aus a, y, d, daß jedes einfach unendliche System N wirklich ein unendliches System ift (64), weil es einem echten Theile N' feiner felbft ähnlich ift.

. 72. Sat. In jedem unendlichen Syfteme S ift ein einfach unendliches Syftem N als Theil enthalten.

Written in an explicitly set-theoretic language

(But with slightly different notation from ours.)

For a summary, see: Kathryn Edwards, 'Richard Dedekind (1831–1916)', *Mathematics Today* **52**(1) (Feb 2016) 212–215

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Set theory in our lives

Set theory as an effective language for mathematics:

(ロ)、(型)、(E)、(E)、 E) の(()

Set theory in our lives

Set theory as an effective language for mathematics:

Set-builder notation

Set theory in our lives

Set theory as an effective language for mathematics:

- Set-builder notation
- Unification of ideas concerning functions and relations

Nicolas Bourbaki (1934–???)

ACTUALITÉS SCIENTIFIQUES ET INDUSTRIELLES 1258 Drasina Millio rous a dislande

N. BOURBAKI FASCICULE XXII

ÉLÉMENTS DE MATHÉMATIQUE

THÉORIE DES ENSEMBLES

CHAPITRE 4

STRUCTURES

	and the second
ήπ	
Ŵ	
HERMANN	

Collective of French mathematicians who set out to reformulate mathematics on extremely formal, abstract, structural lines — the language of sets has a significant role to play.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Nicolas Bourbaki (1934–???)

ACTUALITÉS SCIENTIFIQUES ET INDUSTRIELLES 1258 Drasina Millio rous a dislande

N. BOURBAKI FASCICULE XXII

ÉLÉMENTS DE MATHÉMATIQUE

THÉORIE DES ENSEMBLES

CHAPITRE 4

STRUCTURES

	2 States
da.	
M	
HERMANN	

Collective of French mathematicians who set out to reformulate mathematics on extremely formal, abstract, structural lines — the language of sets has a significant role to play.

Association des collaborateurs de Nicolas Bourbaki

・ロット 4回ット 4回ット 4回ット 4日ッ

SMP/New Math

School Mathematics Project (UK)/New Mathematics (USA):

(ロ)、(型)、(E)、(E)、 E) の(()

School Mathematics Project (UK)/New Mathematics (USA):

Response to the launch of Sputnik I in 1957

School Mathematics Project (UK)/New Mathematics (USA):

- Response to the launch of Sputnik I in 1957
- Traditional school arithmetic and geometry replaced by abstract algebra, matrices, symbolic logic, ... — in short, mathematical topics based on set theory

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

School Mathematics Project (UK)/New Mathematics (USA):

- Response to the launch of Sputnik I in 1957
- Traditional school arithmetic and geometry replaced by abstract algebra, matrices, symbolic logic, ... — in short, mathematical topics based on set theory
- Much debate now usually regarded as a passing fad

Conclusions

Our modern perception of real numbers took well over 2000 years to crystallise, with geometric, arithmetic, set-theoretic intuitions to the fore at different times.

Conclusions

- Our modern perception of real numbers took well over 2000 years to crystallise, with geometric, arithmetic, set-theoretic intuitions to the fore at different times.
- The concept of set emerged at about the same time as the modern concept of real number, 1870–1890.

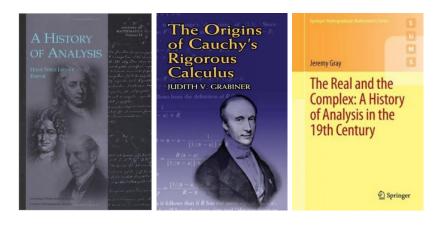
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

- Our modern perception of real numbers took well over 2000 years to crystallise, with geometric, arithmetic, set-theoretic intuitions to the fore at different times.
- The concept of set emerged at about the same time as the modern concept of real number, 1870–1890.

This coincidence is no coincidence.

Further reading on the development of analysis



ヘロト ヘヨト ヘヨト ヘヨト

э