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Lecture XII

19th-century rigour in real analysis, continued
Part 3: Sets
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New ideas

An idea that emerged as central to Dedekind’s work:

that of a set

In fact, naive notions of sets had already appeared all but
unremarked earlier in the nineteenth century

I as Gauss’ classes, orders, genera (of binary quadratic forms
with integer coefficients) [see Lecture XIV];

I as Galois’ groupes (of permutations and of substitutions);

I as Cauchy’s systèmes (of substitutions);

I as Dedekind’s Zahlkörpern (of algebraic numbers).

This is by no means an exhaustive list of examples; see
Mathematics emerging, §18.2 for others.
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I as Cauchy’s systèmes (of substitutions);

I as Dedekind’s Zahlkörpern (of algebraic numbers).

This is by no means an exhaustive list of examples; see
Mathematics emerging, §18.2 for others.



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

New ideas

An idea that emerged as central to Dedekind’s work: that of a set

In fact, naive notions of sets had already appeared all but
unremarked earlier in the nineteenth century

I as Gauss’ classes, orders, genera (of binary quadratic forms
with integer coefficients) [see Lecture XIV];

I as Galois’ groupes (of permutations and of substitutions);
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Formalisation of the concept of a set

Georg Cantor: series of articles in
Mathematische Annalen, 1879–1883

Final one also published separately as
Grundlagen einer allgemeinen
Mannigfaltigkeitslehre [Foundations of a
general theory of aggregates], Teubner,
Leipzig, 1883:

By an “aggregate” (Menge) we
are to understand any collec-
tion into a whole (Zusammen-
fassung zu einem Ganzen) M of
definite and separate objects m
of our intuition or our thought.
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Cantor and the continuum

Cantor’s major interest: the continuum (i.e., the set of real
numbers).

How to characterise this set within the collection of all sets? — A
question that Cantor never satisfactorily answered.

Cantor’s first great insight regarding sets (1873): infinite sets can
have different sizes.
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Cantor’s major interest: the continuum (i.e., the set of real
numbers).

How to characterise this set within the collection of all sets?

— A
question that Cantor never satisfactorily answered.

Cantor’s first great insight regarding sets (1873): infinite sets can
have different sizes.
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Cantor’s first proof that the continuum is uncountable

Proposition: Given any sequence of real numbers ω1, ω2, ω3, . . .
and any interval [α, β], there is a real number in [α, β] that is not
contained in the given sequence.

Proof proceeds by construction of a sequence of nested intervals
[α, β] ⊇ [α1, β1] ⊇ [α2, β2] ⊇ [α3, β3] ⊇ · · · . Cantor considered the
different cases where the sequence terminates or does not, but in
all instances he constructed a real number in the interval that does
not lie in the original sequence.

Next suppose that the continuum is countable, i.e., that the real
numbers may be listed ω1, ω2, ω3, . . .. But then there is a real
number in any interval [α, β] that does not belong to this list — a
contradiction.

The more famous diagonal argument came later (1891).
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One-to-one correspondences

Also in the 1874 paper:

The algebraic A numbers are countable — therefore transcendental
numbers exist.

NB: In 1851 Joseph Liouville had already produced a
constructive proof of the existence of transcendental numbers.

Charles Hermite proved in 1873 that e is transcendental.

Proof of the transcendence of π was finally accomplished by
Carl Louis Lindemann in 1882.

Cantor to Dedekind (1877): there is a one-to-one correspondence
between a line and the plane — “Je le vois, mais je ne le crois
pas!” (“I see it, but I don’t believe it!”)
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Proof of the transcendence of π was finally accomplished by
Carl Louis Lindemann in 1882.

Cantor to Dedekind (1877): there is a one-to-one correspondence
between a line and the plane — “Je le vois, mais je ne le crois
pas!” (“I see it, but I don’t believe it!”)
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Cantor’s Mengenlehre

Developed at the end of the nineteenth century (1878–1897): a
general theory of sets and of transfinite numbers — infinite
cardinals (e.g., #N = ℵ0, #R = c), transfinite ordinals, . . .

Mixed terminology: Inbegriff, System, Mannigfaltigkeit, Menge

Continuum hypothesis (1878): there is no infinite cardinal strictly
between ℵ0 and c

Power set construction given in 1890: P(S) — the set of all
subsets of a set S

Cantor’s Theorem: #P(S) > #S

Further: #P(N) = #R, or 2ℵ0 = c
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Was sind und was sollen die Zahlen?

Richard Dedekind, Was sind und
was sollen die Zahlen?
Braunschweig, 1893

Contains, amongst other things:

I a definition of infinite sets;

I an axiomatisation of the
natural numbers (soon
simplified by Peano).



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Was sind und was sollen die Zahlen?

Richard Dedekind, Was sind und
was sollen die Zahlen?
Braunschweig, 1893

Contains, amongst other things:

I a definition of infinite sets;

I an axiomatisation of the
natural numbers (soon
simplified by Peano).



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Was sind und was sollen die Zahlen?

Richard Dedekind, Was sind und
was sollen die Zahlen?
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Was sind und was sollen die Zahlen?

Also includes a definition of a
function as a mapping between
sets (p. 6):

“By a mapping of a system S we
understand a law according to
which every determinate element
s of S is associated with a
determinate thing which is called
the image of s and is denoted by
φ(s) . . .”
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Was sind und was sollen die Zahlen?

Extract from William Ewald, From Kant to Hilbert: a source book
in the foundations of mathematics, OUP, 1996, vol. II, p. 790:

The title of Dedekind’s paper is subtle: rigidly translated
it asks ‘What are, and what ought to be, the numbers?’
But sollen here carries several senses—among them, ‘What
is the best way to regard the numbers?’; ‘What is the
function of numbers?; ‘What are numbers supposed to
be?’. But perhaps Dedekind’s title is famous enough to
be left in the original.

W. W. Beman translated the essay under the title The nature and
meaning of numbers (1901).
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Was sind und was sollen die Zahlen?

Written in an explicitly
set-theoretic language

(But with slightly different
notation from ours.)

For a summary, see: Kathryn
Edwards, ‘Richard Dedekind
(1831–1916)’, Mathematics
Today 52(1) (Feb 2016)
212–215
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Set theory in our lives

Set theory as an effective language for mathematics:

I Set-builder notation

I Unification of ideas concerning functions and relations
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Nicolas Bourbaki (1934–????)

Collective of French
mathematicians who set out to
reformulate mathematics on
extremely formal, abstract,
structural lines — the language
of sets has a significant role to
play.

Association des collaborateurs de
Nicolas Bourbaki

https://www.bourbaki.fr/
https://www.bourbaki.fr/
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SMP/New Math

School Mathematics Project (UK)/New Mathematics (USA):

I Response to the launch of Sputnik I in 1957

I Traditional school arithmetic and geometry replaced by
abstract algebra, matrices, symbolic logic, . . . — in short,
mathematical topics based on set theory

I Much debate — now usually regarded as a passing fad
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Conclusions

I Our modern perception of real numbers took well over 2000
years to crystallise, with geometric, arithmetic, set-theoretic
intuitions to the fore at different times.

I The concept of set emerged at about the same time as the
modern concept of real number, 1870–1890.

I This coincidence is no coincidence.
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Further reading on the development of analysis


