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BO1 History of Mathematics
Lecture XIII

Complex analysis
Part 1: Complex numbers

MT 2020 Week 7
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Summary

Part 1

I Complex numbers: validity and representation

I Substitution of complex values for real

Part 2

I Cauchy’s contributions

I Riemann

I What is an analytic function?
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Early ideas about complex numbers

Before 1600, very faint beginnings:

I Cardano (1545) [from quadratics]

I Bombelli (1572) [from cubics]

I Harriot (c. 1600) [from quartics]

But:

For the most part such roots were ignored: negative roots
were described merely as ‘false’, but complex roots as ‘im-
possible’. (Mathematics emerging, p. 459.)
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Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40,

i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,
meaning

“putting aside mental tortures”,
or
“the cross-multiples having canceled
out”,
or

“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40, i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,
meaning

“putting aside mental tortures”,
or
“the cross-multiples having canceled
out”,
or

“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40, i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,

meaning

“putting aside mental tortures”,
or
“the cross-multiples having canceled
out”,
or

“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40, i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,
meaning

“putting aside mental tortures”,

or
“the cross-multiples having canceled
out”,
or

“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40, i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,
meaning

“putting aside mental tortures”,
or
“the cross-multiples having canceled
out”,

or
“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40, i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,
meaning

“putting aside mental tortures”,
or
“the cross-multiples having canceled
out”,
or

“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Cardano and complex numbers
Problem: find two numbers that add
to 10 and multiply to 40, i.e., solve
an equation of the type ‘square plus
number equals thing’

Cardano noted that 5 +
√
−15 and

5−
√
−15 solve the problem,

“dismissis incruciationibus”,
meaning

“putting aside mental tortures”,
or
“the cross-multiples having canceled
out”,
or

“the imaginary part being lost”

But regarded such ideas as absurd

and useless



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Bombelli and complex numbers
“Another sort of cube root much
different from the former . . .”

Systematic rules:

più di meno via più di meno, fà

meno (
√
−1×

√
−1 = −1)

meno di meno via più di meno, fà

più (−
√
−1×

√
−1 = 1)

But complex numbers were not
admitted as solutions of
equations — they could appear
in calculations, provided they
cancelled out by the end

Complex numbers justified
through practical use?
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Harriot and complex numbers

Add MS 6783 f. 156

Unpublished manuscripts contain
systematic treatment of complex
roots of equations — but these were
removed by his editors

Cf. Harriot’s Artis analyticae praxis
(1931), pp. 14–15; see:

Muriel Seltman & Robert Goulding,
Thomas Harriot’s Artis analyticae
praxis: an English translation with
commentary, Springer, 2007

http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/mpiwg/online/permanent/library/VWXURW4V&start=311&viewMode=images&pn=311
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Descartes and ‘imaginaries’

La géométrie (1637):

introduced the term
‘imaginaire’

— meant to be
derogatory?

Didn’t regard them as
numbers
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Ideas about complex numbers in the later 17th century

John Wallis, A treatise of algebra
(1685): complex numbers based
on insights derived from

I Euclidean geometry

I trigonometry

I properties of conics

(See: Mathematics emerging,
§15.1.1.)



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Wallis: justification of imaginary numbers

I A man starts at A and walks 5 yds to B, then retreats 2 yds
to C: overall, he has covered 3 yds.

If he instead retreats 8
yds to D, then we may say that he has covered -3 yds.

I Somewhere on the seashore, we gain 26 units of land from the
sea, but lose 10 units. Thus, we have gained 16 units overall;
if this is a perfect square, then it has side 4 units of length.

I If instead we lose 26 units of land, but gain 10, then we have
lost 16 units overall, or gained -16. The area in question
(assumed to be a square) might therefore be viewed as having
side
√
−16.

(see: Leo Corry, A brief history of numbers, OUP, 2015,
pp. 184–185)
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Wallis: justification of imaginary numbers

I A man starts at A and walks 5 yds to B, then retreats 2 yds
to C: overall, he has covered 3 yds. If he instead retreats 8
yds to D, then we may say that he has covered -3 yds.

I Somewhere on the seashore, we gain 26 units of land from the
sea, but lose 10 units.

Thus, we have gained 16 units overall;
if this is a perfect square, then it has side 4 units of length.

I If instead we lose 26 units of land, but gain 10, then we have
lost 16 units overall, or gained -16. The area in question
(assumed to be a square) might therefore be viewed as having
side
√
−16.

(see: Leo Corry, A brief history of numbers, OUP, 2015,
pp. 184–185)
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Wallis: imaginary numbers as geometric means

(see: Leo Corry, A brief history of numbers, OUP, 2015,
pp. 185–186)
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“A new Impossibility in Algebra”
John Wallis, A treatise of algebra, p. 267 ‘Of negative squares’:
... requires a new Impossibility in Algebra

...
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Complex numbers in the 18th century (1)

Nature remained
unclear:

“that amphibian
between being and
not-being, which we
call the imaginary root
of negative unity”
(Leibniz, 1702)

But complex numbers
were increasingly being
used . . .
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Complex numbers in the 18th century (2)

Johann Bernoulli, ‘Solution d’un
problème concernant le calcul
intégrale, ...’, Mémoires de
l’Académie royale des sciences,
1702:

by making the substitution

z =
√

1
t − bb, transform the

differential adz
bb+zz into −adt

2bt
√
−1

No worries about the validity of
switching between real and complex
integrals

(See Mathematics emerging,
§15.2.1)
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Complex numbers in the 18th century (3)

Isaac Newton, Universal Arithmetick,
1728:

p. 195: “it is just that the Roots of
Equations should be often impossible,
lest they should exhibit the cases of
Problems that are impossible as if they
are possible”

— complex numbers as an
indicator of real-world solvability of
problems
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Complex numbers in the 18th century (3)

Isaac Newton, Universal Arithmetick,
1728:

p. 195: “it is just that the Roots of
Equations should be often impossible,
lest they should exhibit the cases of
Problems that are impossible as if they
are possible” — complex numbers as an
indicator of real-world solvability of
problems
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Complex numbers in the 18th century (4)

Leonhard Euler also used them freely:
e.g., in Introductio in analysin
infinitorum, 1748, §138:

e+v
√
−1 = cos .v +

√
−1. sin .v

e−v
√
−1 = cos .v −

√
−1. sin .v

(See Mathematics emerging, §9.2.3)
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The Fundamental Theorem of Algebra

Every polynomial equation of degree n has exactly n roots.

I Early 17th century: known that an equation of degree n may
have n roots

I During 17th century: complex numbers gradually admitted as
roots

I 15 Sept 1759: Euler asserted theorem in a letter to Nicholas
Bernoulli, but didn’t prove it

I Mid/late 18th century: attempted proofs by Euler,
d’Alembert, Lagrange, and others

I 1799: proof by Gauss in his doctoral dissertation, followed by
several others

I 1806: new proof by Argand

I 1821: Argand’s proof appears in Cauchy’s Cours d’analyse
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New ways of viewing complex numbers

Caspar Wessel, ‘Om
Directionens analytiske
Betegning . . .’ [‘On the
analytic representation of
direction . . .’], Nye
Samling af det Kongelige
Danske Videnskabers
Selskabs Skrifter, 1799

Published in Danish —
not well known

French translation
published in 1897
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—
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French translation
published in 1897
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New ways of viewing complex numbers

Robert Argand, Essay on a
method of representing imaginary
quantities . . ., 1806
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New ways of viewing complex numbers

Transactions of the Royal Irish
Academy, 1837

Complex numbers as ordered
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