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Euclid on numbers

(positive integers)
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The Euclidean algorithm (Proposition VII.2)
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Euclid on prime numbers
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Euclid on prime numbers
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Euclid on prime numbers (Proposition IX.20)
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Euclid on prime numbers (Proposition IX.20)



D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

D
r.

C
hr

is
to

ph
er

H
ol

lin
gs

,
M

at
he

m
at

ic
al

In
st

it
ut

e,
O

xf
or

d

Euclid on perfect numbers
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Euclid on perfect numbers
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Euclid on perfect numbers (Proposition IX.36)

In modern terms: if 2n − 1 is prime,
then 2n−1(2n − 1) is perfect
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Euclid on perfect numbers (Proposition IX.36)

In modern terms: if 2n − 1 is prime,
then 2n−1(2n − 1) is perfect
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Euclid on perfect numbers (Proposition IX.36)

In modern terms: if 2n − 1 is prime,
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Number theory after Euclid

Very little for many centuries...

Recall that Diophantus’ Arithmetica (13 books, c. AD 250)
featured number problems; for example [from Lecture IX]:

Problem I.27: Find two numbers such that their sum and
product are given numbers

The Arithmetica also features problems and ideas that we would
now classify as number-theoretic; for example:

Problem III.19: To find four numbers such that the square
of their sum plus or minus any one singly gives a square

Problem V.9: To divide unity into two parts such that, if
a given number is added to either part, the result will be
a square

Restrictions on the permitted form of solutions to problems
eventually gave rise to the notion of Diophantine equations
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Number theory outside Europe

Sūnžı Suànj̄ıng (The Mathematical Classic of Master Sun)
(3rd–5th century BC) contains a statement, but no proof, of the
Chinese Remainder Theorem for the solution of simultaneous
congruences

An algorithm for the solution was provided by Aryabhata in
6th-century India

In 7th-century India, Brahmagupta studied Diophantine equations
(including Pell’s equation — see later)

These works were unknown in Europe until the 19th century
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17th-century number theory

Bachet’s Latin edition of
Diophantus’ Arithmetica (1621)

Pierre de Fermat owned a 1637
edition, which he studied and
annotated
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17th-century number theory

Bachet’s Latin edition of
Diophantus’ Arithmetica (1621)

Pierre de Fermat owned a 1637
edition, which he studied and
annotated
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Fermat on number theory

Fermat’s Little Theorem: if a is any integer and p is prime then p
divides ap − a

Studies of ‘Pell’s Equation’ x2 − Dy2 = 1

Conjectures on perfect numbers [more in a moment]

Studies of diophantine problems leading to ‘Fermat’s Last
Theorem’ [more in a moment]

Published nothing — had to be exhorted to write his ideas down

(See Mathematics emerging, §§6.1–6.3)
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The ‘Last Theorem’

Arithmetica Problem II.8 concerns the splitting of a given square
number into two other squares

Fermat’s marginal note:
It is impossible to separate a cube into two cubes, or a
fourth power into two fourth powers, or in general, any
power higher than the second, into two like powers. I
have discovered a truly marvelous proof of this, which this
margin is too narrow to contain.

(See: Simon Singh, Fermat’s Last Theorem, Fourth Estate, 1998)
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fourth power into two fourth powers, or in general, any
power higher than the second, into two like powers. I
have discovered a truly marvelous proof of this, which this
margin is too narrow to contain.

(See: Simon Singh, Fermat’s Last Theorem, Fourth Estate, 1998)
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Perfect numbers

Euclid’s Theorem: if 2n − 1 is prime then 2n−1(2n − 1) is perfect

Fermat to Mersenne (1640): if 2n − 1 is prime then n must be
prime

Mersenne (1644): if p ≤ 257 and 2p − 1 is prime then p is one of
2, 3, 5, 7, 13, 17, 67 (a misprint for 61 perhaps?), 127, 257. Not
quite right: 289 − 1, 2107 − 1 are prime and 2257 − 1 is composite.

Euler: proof that all even perfect numbers are of Euclid’s form
(proved 1749, but published posthumously)

(See Mathematics emerging, §6.1.2)

NB. 51 Mersenne primes are currently known, the largest being
282,589,933 − 1 (found in June 2019)
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17th-century attitudes to number theory

Fermat failed to spark an interest in number theory in his
contemporaries

Pascal to Fermat (1655):

. . . seek elsewhere those who can follow you in your nu-
merical discoveries . . . I confess to you that this goes far
beyond me . . .

Number-theoretic investigations were widely regarded as trivial and
uninteresting

Huygens to Wallis:
There is no lack of better topics for us to spend our time
on . . .
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The ‘rebirth’ of number theory

1670 edition of Bachet, published
by Samuel Fermat, including his
father’s notes

The ‘Last Theorem’ was not the
only result for which Fermat
failed to provide a proof

Number theory was ‘reborn’ from
the attempts of Euler (and later
Lagrange and Legendre) to fill
the gaps left by Fermat
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Euler on number theory

Euler (1747):
Nor is the author disturbed by the authority of the greatest
mathematicians when they sometimes pronounce that number
theory is altogether useless and does not deserve investigation.
In the first place, knowledge is always good in itself, even when
it seems to be far removed from common use. Secondly, all
the aspects of the truth which are accessible to our mind are
so closely related to one another that we dare not reject any of
them as being altogether useless. . . .

Consequently, the present author considers that he has by no

means wasted his time and effort in attempting to prove various

theorems concerning integers and their divisors. . . . Moreover,

there is little doubt that the method used here by the author

will turn out to be of no small value in other investigations of

greater import.
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19th-century number theory

Gauss’s Disquisitiones arithmeticae (1801) became a key text for
many years to come: modular arithmetic, quadratic forms,
cyclotomy, ...

Number-theoretic problems (especially attempts to prove Fermat’s
Last Theorem) led to the development of ideal theory, and the
linking of number theory and abstract algebra in algebraic number
theory

By the end of the 19th century, a new branch, analytic number
theory, had also emerged (e.g., Riemann hypothesis, Prime
Number Theory π(x) ∼ x

log x , . . .)
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The history of number theory

Leonard Eugene Dickson, History of the theory of numbers, 3 vols.,
Carnegie Institution of Washington, 1919–1923: I, II, III

https://archive.org/details/historyoftheoryo01dick
https://archive.org/details/historyoftheoryo02dickuoft
https://archive.org/details/historyoftheoryo03dickuoft

