
Numerical Solution of Differential Equations:
Problem Sheet 2 (of 4)

1. Consider the Runge–Kutta method yn+1 = yn + h(α k1 + β k2) where k1 = f(xn, yn) and
k2 = f(xn + γh, yn + γhk1), and where α, β, γ are real parameters.

(a) Show that there is a choice of these parameters such that the order of the method is 2.

(b) Suppose that a second-order method of the above form is applied to the initial value
problem y′ = −λy, y(0) = 1, where λ is a positive real number. Show that the sequence
(yn)n≥0 is bounded if and only if h ≤ 2

λ
.

Show further that, for such λ,

|y(xn)− yn| ≤
1

6
λ3h2xn, n ≥ 0.

2. a) What does it mean to say that a linear multistep method is zero-stable? Formulate an
equivalent characterization of zero-stability of a linear multistep method in terms of
the roots of its first characteristic polynomial.

b) Define the consistency error of a linear multistep method.

c) Show that there is a value of the parameter b such that the linear multistep method
defined by the formula yn+3+(2b−3)(yn+2−yn+1)−yn = hb(fn+2+fn+1) is fourth-order
accurate. Show further that the method is not zero–stable for this value of b.

3. A linear multistep method
∑k

j=0 αjyn+j = h
∑k

j=0 βjf(xn+j , yn+j), n ≥ 0, for the numerical
solution of the initial-value problem y′ = f(x, y), y(x0) = y0, on the mesh {xj : xj = x0+jh}
of uniform spacing h > 0 is said to be absolutely stable for a certain h if, when applied to
the model problem y′ = λy, y(0) = 1, with λ < 0, on the interval x ∈ [0,∞), the sequence
(|yn|)n≥k decays exponentially fast; i.e., |yn| ≤ Ce−µn, n ≥ k, for some positive constants C
and µ.

a) Show that a linear multistep method is absolutely stable for h > 0 if, and only if, all
roots z of its stability polynomial π(z; h̄) = ρ(z) − h̄σ(z), where ρ and σ are the first
and second characteristic polynomial of the linear multistep method respectively and
h̄ = λh, belong to the open unit disk D = {z : |z| < 1} in the complex plane.

b) For each of the following methods find the range of h > 0 for which it is absolutely
stable (when applied to y′ = λy, y(0) = 1, λ < 0, x ∈ [0,∞)):

b1) yn+1 − yn = hf(xn, yn);

b2) yn+1 − yn = hf(xn+1, yn+1);

b3) yn+2 − yn = 1
3
h (f(xn+2, yn+2) + 4f(xn+1, yn+1) + f(xn, yn)).

4. Which of the following would you regard a stiff initial-value problem?

a) y′ = −(105e−104x+1)(y−1), y(0) = 2, on the interval x ∈ [0, 1]. Note that the solution
can be found in closed form:

y(x) = e10(e
−10

4
x−1)e−x + 1.



b)

y′1 = −0.5y1 + 0.501y2, y1(0) = 1.1,

y′2 = 0.501y1 − 0.5y2, y2(0) = −0.9,

on the interval x ∈ [0, 1].

5. Consider the θ–method
yn+1 = yn + h [(1− θ)fn + θfn+1]

for θ ∈ [0, 1].

a) Show that the method is A–stable for θ ∈ [1/2, 1].

b) A method is said to be A(α)–stable, α ∈ (0, π/2), if its region of absolute stability (as
a set in the complex plane), contains the infinite wedge {h̄ : π−α < arg(h̄) < π+α}.
Find all θ ∈ [0, 1] such that the θ–method is A(α)–stable for some α ∈ (0, π/2).

Note: In the next question you will find it helpful to exploit the following result, known as Schur’s
criterion. Consider the polynomial φ(z) = ckz

k + · · · + c1z + c0, ck 6= 0, c0 6= 0, with complex
coefficients. The polynomial φ is said to be a Schur polynomial if each of its roots zj satisfies
|zj| < 1, j = 1, . . . , k. Given the polynomial φ(z), as above, consider the polynomial

φ̂(z) = c̄0z
k + c̄1z

k−1 + . . .+ c̄k−1z + c̄k ,

where c̄j denotes the complex conjugate of cj , j = 1, . . . , k. Further, let us define

φ1(z) =
1

z

[

φ̂(0)φ(z)− φ(0)φ̂(z)
]

.

Clearly φ1 has degree≤ k−1. The polynomial φ is a Schur polynomial if, and only if, |φ̂(0)| > |φ(0)|
and φ1 is a Schur polynomial.

6. Show that the second-order backward differentiation method

3yn+2 − 4yn+1 + yn = 2hf(xn+2, yn+2)

is A-stable.


