Numerical Solution of Differential Equations:
Problem Sheet 2 (of 4)

1. Consider the Runge-Kutta method y,.1 = vy, + h(aky + B ko) where ky = f(z,,y,) and
ks = f(x, + vh,yn + Yhk1), and where «, 3, v are real parameters.

(a) Show that there is a choice of these parameters such that the order of the method is 2.

(b) Suppose that a second-order method of the above form is applied to the initial value
problem ' = — Ay, y(0) = 1, where X is a positive real number. Show that the sequence
(Yn)n>0 is bounded if and only if h < 3.

Show further that, for such A,
Lig o
[y(@n) =yl < cAPP20, 02 0.

2. a) What does it mean to say that a linear multistep method is zero-stable? Formulate an
equivalent characterization of zero-stability of a linear multistep method in terms of
the roots of its first characteristic polynomial.

b) Define the consistency error of a linear multistep method.

c) Show that there is a value of the parameter b such that the linear multistep method
defined by the formula v, 34 (26— 3) (Yns2 —Yns1) —Yn = hb(frro+ frnr1) is fourth-order
accurate. Show further that the method is not zero—stable for this value of b.

3. A linear multistep method Z?:o QjYntj = h Z?:o B f(Tntjs Yntj), n > 0, for the numerical
solution of the initial-value problem y' = f(z,y), y(zo) = yo, on the mesh {z; : z; = zo+jh}
of uniform spacing h > 0 is said to be absolutely stable for a certain h if, when applied to
the model problem y' = Ay, y(0) = 1, with A < 0, on the interval x € [0, 00), the sequence
(|yn|)n>k decays exponentially fast; i.e., |y,| < Ce™" n >k, for some positive constants C
and .

a) Show that a linear multistep method is absolutely stable for A > 0 if, and only if, all
roots z of its stability polynomial ©(z;h) = p(z) — ho(z), where p and o are the first
and second characteristic polynomial of the linear multistep method respectively and
h = Ah, belong to the open unit disk D = {2 : |z] < 1} in the complex plane.

b) For each of the following methods find the range of A > 0 for which it is absolutely
stable (when applied to ¢ = Ay, y(0) =1, A <0, z € [0,00)):

bl) Yn+1 — Yn = hf(Tn, Yn);
b2) Un+1 — Yn = hf($n+lvyn+1)§
b3) Yn+2 — Yn = %h (f(zn+2> yn+2) + 4f(xn+la yn—i—l) + f(zna yn))

4. Which of the following would you regard a stiff initial-value problem?

a) y = —(10% 71" 4+ 1)(y — 1), y(0) = 2, on the interval z € [0, 1]. Note that the solution
can be found in closed form:

C10ts
y(x) = '€ B



Yo = 0.501y; — 0.5y, y2(0) = —0.9,

on the interval = € [0, 1].

5. Consider the 8—method
Yn+1 = YUn + h [(1 - e)fn + efn—i-l]

for 6 € [0, 1].

a) Show that the method is A-stable for 6 € [1/2,1].

b) A method is said to be A(a)-stable, a € (0,7/2), if its region of absolute stability (as
a set in the complex plane), contains the infinite wedge {h : T — a < arg(h) < 7 + a}.
Find all 6 € [0, 1] such that the #—method is A(«a)-stable for some a € (0,7/2).

Note: In the next question you will find it helpful to exploit the following result, known as Schur’s
criterion. Consider the polynomial ¢(z) = c;2¥ + -+ + 12 + co, cx # 0, ¢g # 0, with complex
coefficients. The polynomial ¢ is said to be a Schur polynomial if each of its roots z; satisfies
|zj| <1, j=1,...,k. Given the polynomial ¢(z), as above, consider the polynomial

~

0(z) = + @ 4Gzt G

where ¢; denotes the complex conjugate of ¢;, j = 1,..., k. Further, let us define
1. .
B1(2) = < [9(0)8(2) — 9(0)()] -

Clearly ¢; has degree < k—1. The polynomial ¢ is a Schur polynomial if, and only if, |$(0)| > |#(0)|
and ¢ is a Schur polynomial.

6. Show that the second-order backward differentiation method

3yn+2 - 4yn+1 + Yn = 2hf(I7H-2> yn+2)

is A-stable.



