
Numerical Solution of Differential Equations:
Problem Sheet 4 (of 4)

1. Consider the implicit Euler scheme
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for the numerical solution of the initial-value problem
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, −∞ < x < ∞, t > 0,
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where a > 0 and b are fixed real numbers. Show that the scheme is unconditionally stable in the
ℓ2 norm.

Show further that the consistency error |T n
j | ≤ C(∆t+(∆x)2) for all n ≥ 0 and j = 0,±1,±2, . . . ,

where C is a constant independent of ∆t and ∆x, provided that ∂2u/∂t2, ∂3u/∂x3 and ∂4u/∂x4

exist and are bounded functions of x and t, (x, t) ∈ (−∞,∞)× [0,∞).

2. Consider the θ-method for the numerical solution of the initial-value problem
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Show that the resulting scheme is unconditionally stable in the ℓ2 norm and has a consistency
error which is O((∆t)2+(∆x)2), provided that derivatives of u of sufficiently high order exist and
are bounded functions of x and t, (x, t) ∈ (−∞,∞)× [0,∞).

3. The diffusion equation ut = uxx, −∞ < x < ∞, subject to the initial condition u(x, 0) = u0(x),
−∞ < x < ∞, is approximated by the finite difference scheme (Crandall’s scheme):
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with U0
j = u0(xj), where ∆t > 0, ∆x > 0, ν = ∆t/(∆x)2 and ζ is a fixed constant. Show that if

ν is a fixed real number, then the consistency error, T n
j , satisfies

T n
j =

{

O((∆x)2) if ζ 6= 1/6,
O((∆x)4) if ζ = 1/6.

4. Letting ν = ∆t/(∆x)2, ∆x = 1/J , J ≥ 2, ∆t = T/N , N ≥ 1, T > 0, consider the θ–scheme
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where j = 0, 1, . . . , J − 1, 0 ≤ n ≤ N − 1, with 0 ≤ θ ≤ 1,

Un
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and
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for the numerical solution of the initial-boundary-value problem ut = uxx, 0 < x < 1, 0 < t ≤ T ,
subject to homogeneous Dirichlet boundary conditions at x = 0 and x = 1, and the initial
condition u(x, 0) = u0(x), 0 < x < 1.

Show that if 2ν(1− θ) ≤ 1, then the θ-scheme satisfies the following maximum principle:
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5. Suppose that f : R → R is a continuous, monotonic nonincreasing function. Consider the initial-
boundary-value problem

ut − uxx = f(u) for x ∈ (0, 1) and t ∈ (0, T ],

u(0, t) = 0, u(1, t) = 0 for t ∈ (0, T ],

u(x, 0) = u0(x) for x ∈ [0, 1],

where T > 0 and u0 ∈ C([0, 1]) is a given function satisfying the compatibility conditions u0(0) = 0,
u0(1) = 0.

(a) Show that if there exists a real-valued function u such that ut, uxx ∈ C([0, 1]× [0, T ]), which
solves this initial boundary-value problem, then u is unique.

(b) Construct an implicit finite difference scheme for the numerical solution of this problem on
a uniform spatial mesh of mesh size ∆x = 1/N in the x-direction and ∆t = T/M in the
t-direction, where N ≥ 2 and M ≥ 1.

(c) Brouwer’s fixed point theorem asserts that: Every continuous function from a closed ball of

a Euclidean space into itself has a fixed point. Show, using Brouwer’s fixed point theorem,
that the finite difference scheme has a solution
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at each time level m, m ∈ {1, . . . ,M}. Show further, by mimicking your proof of part (a),
that for each m ∈ {1, . . . ,M} the solution Um is unique.

6. [Optional: See the Lecture Notes for the definition of the ADI scheme.] Consider the heat equation
ut = uxx+uyy+u for (x, y) ∈ R

2, and t ∈ (0, T ], subject to the initial condition u(x, y, 0) = u0(x, y).

Formulate an ADI scheme, based on the Crank–Nicolson method, for this initial-value problem,
on a uniform spatial mesh with mesh-sizes ∆x and ∆y in the x and y co-ordinate directions,
respectively.

Use Fourier analysis to show that your ADI scheme is unconditionally von Neumann stable.


