
Numerical Solution of Differential Equations I

Endre Süli

Mathematical Institute
University of Oxford

2020

Lecture 2

One-step methods

Consider the initial-value problem

y ′ = f (x , y), x ∈ [x0,XM], (1)

y(x0) = y0. (2)

The simplest example of a one-step method for the numerical
solution of the initial-value problem (1), (2) is Euler’s method.1

Euler’s method. Suppose that the initial-value problem (1), (2) is
to be solved on the interval [x0,XM]. We divide this interval by the
mesh-points xn = x0 + nh, n = 0, . . . ,N, where h = (XM − x0)/N
and N is a positive integer; h is called the step size.

1Leonard Euler (1707–1783)

One-step methods

Consider the initial-value problem

y ′ = f (x , y), x ∈ [x0,XM], (1)

y(x0) = y0. (2)

The simplest example of a one-step method for the numerical
solution of the initial-value problem (1), (2) is Euler’s method.1

Euler’s method. Suppose that the initial-value problem (1), (2) is
to be solved on the interval [x0,XM]. We divide this interval by the
mesh-points xn = x0 + nh, n = 0, . . . ,N, where h = (XM − x0)/N
and N is a positive integer; h is called the step size.

1Leonard Euler (1707–1783)

One-step methods

Consider the initial-value problem

y ′ = f (x , y), x ∈ [x0,XM], (1)

y(x0) = y0. (2)

The simplest example of a one-step method for the numerical
solution of the initial-value problem (1), (2) is Euler’s method.1

Euler’s method. Suppose that the initial-value problem (1), (2) is
to be solved on the interval [x0,XM]. We divide this interval by the
mesh-points xn = x0 + nh, n = 0, . . . ,N, where h = (XM − x0)/N
and N is a positive integer; h is called the step size.

1Leonard Euler (1707–1783)

Suppose that, for each n, we seek a numerical approximation yn to
y(xn), the value of the analytical solution at the mesh point xn.

As y(x0) = y0 is known, suppose that we have already computed
yn, up to some n, 0 ≤ n ≤ N − 1; we define

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1.

Thus, taking in succession n = 0, 1, . . . ,N − 1, one step at a time,
the approximate values yn at the mesh points xn can be easily
obtained. This numerical method is known as Euler’s method.

Suppose that, for each n, we seek a numerical approximation yn to
y(xn), the value of the analytical solution at the mesh point xn.

As y(x0) = y0 is known, suppose that we have already computed
yn, up to some n, 0 ≤ n ≤ N − 1; we define

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1.

Thus, taking in succession n = 0, 1, . . . ,N − 1, one step at a time,
the approximate values yn at the mesh points xn can be easily
obtained. This numerical method is known as Euler’s method.

Suppose that, for each n, we seek a numerical approximation yn to
y(xn), the value of the analytical solution at the mesh point xn.

As y(x0) = y0 is known, suppose that we have already computed
yn, up to some n, 0 ≤ n ≤ N − 1; we define

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1.

Thus, taking in succession n = 0, 1, . . . ,N − 1, one step at a time,
the approximate values yn at the mesh points xn can be easily
obtained. This numerical method is known as Euler’s method.

A simple derivation of Euler’s method proceeds by first integrating
the differential equation (1) between two consecutive mesh points
xn and xn+1 to deduce that, for n = 0, . . . ,N − 1,

y(xn+1) = y(xn) +

∫ xn+1

xn

f (x , y(x))dx .

Next,

apply the numerical integration rule∫ xn+1

xn

g(x)dx ≈ hg(xn),

called the rectangle rule, with g(x) = f (x , y(x)), to get

y(xn+1) ≈ y(xn)+hf (xn, y(xn)), n = 0, . . .N−1, y(x0) = y0.

This then motivates the definition of Euler’s method.

A simple derivation of Euler’s method proceeds by first integrating
the differential equation (1) between two consecutive mesh points
xn and xn+1 to deduce that, for n = 0, . . . ,N − 1,

y(xn+1) = y(xn) +

∫ xn+1

xn

f (x , y(x))dx .

Next, apply the numerical integration rule∫ xn+1

xn

g(x)dx ≈ hg(xn),

called the rectangle rule, with g(x) = f (x , y(x)), to get

y(xn+1) ≈ y(xn)+hf (xn, y(xn)), n = 0, . . .N−1, y(x0) = y0.

This then motivates the definition of Euler’s method.

This can be generalised by replacing the rectangle rule with a
one-parameter family of integration rules of the form∫ xn+1

xn

g(x)dx ≈ h [(1− θ)g(xn) + θg(xn+1)] ,

with θ ∈ [0, 1] a parameter.

Applying this with g(x) = f (x , y(x))
we find that, for n = 0, . . . ,N − 1,

y(xn+1) ≈ y(xn) + h [(1− θ)f (xn, y(xn)) + θf (xn+1, y(xn+1))] ,

y(x0) = y0.

This motivates the definition of the following one-parameter family
of methods: with y0 given, define

yn+1 = yn+h [(1− θ)f (xn, yn) + θf (xn+1, yn+1)] , n = 0, . . . ,N−1,

parametrised by θ ∈ [0, 1], called the θ-method.

This can be generalised by replacing the rectangle rule with a
one-parameter family of integration rules of the form∫ xn+1

xn

g(x)dx ≈ h [(1− θ)g(xn) + θg(xn+1)] ,

with θ ∈ [0, 1] a parameter. Applying this with g(x) = f (x , y(x))
we find that, for n = 0, . . . ,N − 1,

y(xn+1) ≈ y(xn) + h [(1− θ)f (xn, y(xn)) + θf (xn+1, y(xn+1))] ,

y(x0) = y0.

This motivates the definition of the following one-parameter family
of methods: with y0 given, define

yn+1 = yn+h [(1− θ)f (xn, yn) + θf (xn+1, yn+1)] , n = 0, . . . ,N−1,

parametrised by θ ∈ [0, 1], called the θ-method.

This can be generalised by replacing the rectangle rule with a
one-parameter family of integration rules of the form∫ xn+1

xn

g(x)dx ≈ h [(1− θ)g(xn) + θg(xn+1)] ,

with θ ∈ [0, 1] a parameter. Applying this with g(x) = f (x , y(x))
we find that, for n = 0, . . . ,N − 1,

y(xn+1) ≈ y(xn) + h [(1− θ)f (xn, y(xn)) + θf (xn+1, y(xn+1))] ,

y(x0) = y0.

This motivates the definition of the following one-parameter family
of methods: with y0 given, define

yn+1 = yn+h [(1− θ)f (xn, yn) + θf (xn+1, yn+1)] , n = 0, . . . ,N−1,

parametrised by θ ∈ [0, 1], called the θ-method.

Now, for θ = 0 we recover Euler’s method. For θ = 1, and y0
specified by (2), we get

yn+1 = yn + hf (xn+1, yn+1), n = 0, . . . ,N − 1,

referred to as the implicit Euler method since,

unlike Euler’s
method considered above, it requires the solution of an implicit
equation in order to determine yn+1, given yn.

Euler’s method is sometimes called the explicit Euler method.

The scheme for θ = 1
2 is also of interest: y0 is supplied by (2) and

subsequent values yn+1 are computed from

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

this is called the trapezium rule method.

Now, for θ = 0 we recover Euler’s method. For θ = 1, and y0
specified by (2), we get

yn+1 = yn + hf (xn+1, yn+1), n = 0, . . . ,N − 1,

referred to as the implicit Euler method since, unlike Euler’s
method considered above, it requires the solution of an implicit
equation in order to determine yn+1, given yn.

Euler’s method is sometimes called the explicit Euler method.

The scheme for θ = 1
2 is also of interest: y0 is supplied by (2) and

subsequent values yn+1 are computed from

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

this is called the trapezium rule method.

Now, for θ = 0 we recover Euler’s method. For θ = 1, and y0
specified by (2), we get

yn+1 = yn + hf (xn+1, yn+1), n = 0, . . . ,N − 1,

referred to as the implicit Euler method since, unlike Euler’s
method considered above, it requires the solution of an implicit
equation in order to determine yn+1, given yn.

Euler’s method is sometimes called the explicit Euler method.

The scheme for θ = 1
2 is also of interest: y0 is supplied by (2) and

subsequent values yn+1 are computed from

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

this is called the trapezium rule method.

Now, for θ = 0 we recover Euler’s method. For θ = 1, and y0
specified by (2), we get

yn+1 = yn + hf (xn+1, yn+1), n = 0, . . . ,N − 1,

referred to as the implicit Euler method since, unlike Euler’s
method considered above, it requires the solution of an implicit
equation in order to determine yn+1, given yn.

Euler’s method is sometimes called the explicit Euler method.

The scheme for θ = 1
2 is also of interest: y0 is supplied by (2) and

subsequent values yn+1 are computed from

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

this is called the trapezium rule method.

A further possibility, instead of the trapezium rule method,

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

is the following implicit one-step method

yn+1 = yn + h f

(
xn + xn+1

2
,
yn + yn+1

2

)
, n = 0, . . . ,N − 1;

called the implicit midpoint rule.

Remark
All of these methods can be easily extended to initial-value
problems for systems of differential equations of the form

y′ = f(x , y),

y(x0) = y0,

by replacing y with y and f with f throughout.

A further possibility, instead of the trapezium rule method,

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

is the following implicit one-step method

yn+1 = yn + h f

(
xn + xn+1

2
,
yn + yn+1

2

)
, n = 0, . . . ,N − 1;

called the implicit midpoint rule.

Remark
All of these methods can be easily extended to initial-value
problems for systems of differential equations of the form

y′ = f(x , y),

y(x0) = y0,

by replacing y with y and f with f throughout.

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√
y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√
y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√

y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√

y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]

Example

Given the initial-value problem y ′ = x − y2, y(0) = 0, on the
interval of x ∈ [0, 0.4], we compute an approximate solution using
the θ-method, for θ = 0, 12 , 1, with step size h = 0.1.

For the two implicit methods, corresponding to θ = 1
2 and θ = 1,

the nonlinear equations were solved by using a fixed-point iteration.

k xk yk for θ = 0 yk for θ = 1
2 yk for θ = 1

0 0 0 0 0

1 0.1 0 0.00500 0.00999

2 0.2 0.01000 0.01998 0.02990

3 0.3 0.02999 0.04486 0.05955

4 0.4 0.05990 0.07944 0.09857

Table: The values of the numerical solution at the mesh points

Example

Given the initial-value problem y ′ = x − y2, y(0) = 0, on the
interval of x ∈ [0, 0.4], we compute an approximate solution using
the θ-method, for θ = 0, 12 , 1, with step size h = 0.1.

For the two implicit methods, corresponding to θ = 1
2 and θ = 1,

the nonlinear equations were solved by using a fixed-point iteration.

k xk yk for θ = 0 yk for θ = 1
2 yk for θ = 1

0 0 0 0 0

1 0.1 0 0.00500 0.00999

2 0.2 0.01000 0.01998 0.02990

3 0.3 0.02999 0.04486 0.05955

4 0.4 0.05990 0.07944 0.09857

Table: The values of the numerical solution at the mesh points

For comparison, we also compute the values of the analytical
solution y(x) at the mesh points xn = 0.1 ∗ n, n = 0, . . . , 4.

As the
solution is not available in closed form, we use a Picard iteration to
calculate an accurate approximation to the analytical solution on
the interval [0, 0.4] and call this the “exact solution”:

y0(x) ≡ 0, yk(x) =

∫ x

0

(
ξ − y2k−1(ξ)

)
dξ, k = 1, 2,

Hence,

y0(x) ≡ 0,

y1(x) =
1

2
x2,

y2(x) =
1

2
x2 − 1

20
x5,

y3(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11.

It is easy to prove by induction that

y(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11 + O

(
x14
)
.

For comparison, we also compute the values of the analytical
solution y(x) at the mesh points xn = 0.1 ∗ n, n = 0, . . . , 4. As the
solution is not available in closed form, we use a Picard iteration to
calculate an accurate approximation to the analytical solution on
the interval [0, 0.4] and call this the “exact solution”:

y0(x) ≡ 0, yk(x) =

∫ x

0

(
ξ − y2k−1(ξ)

)
dξ, k = 1, 2,

Hence,

y0(x) ≡ 0,

y1(x) =
1

2
x2,

y2(x) =
1

2
x2 − 1

20
x5,

y3(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11.

It is easy to prove by induction that

y(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11 + O

(
x14
)
.

For comparison, we also compute the values of the analytical
solution y(x) at the mesh points xn = 0.1 ∗ n, n = 0, . . . , 4. As the
solution is not available in closed form, we use a Picard iteration to
calculate an accurate approximation to the analytical solution on
the interval [0, 0.4] and call this the “exact solution”:

y0(x) ≡ 0, yk(x) =

∫ x

0

(
ξ − y2k−1(ξ)

)
dξ, k = 1, 2,

Hence,

y0(x) ≡ 0,

y1(x) =
1

2
x2,

y2(x) =
1

2
x2 − 1

20
x5,

y3(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11.

It is easy to prove by induction that

y(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11 + O

(
x14
)
.

Tabulating y3(x) for x ∈ [0, 0.4] with step size h = 0.1, we get the
values of the “exact solution” at the mesh points:

k xk y(xk)

0 0 0

1 0.1 0.00500

2 0.2 0.01998

3 0.3 0.04488

4 0.4 0.07949

Table: Values of the “exact solution” at the mesh points

The “exact solution” is in good agreement with the numerical
results obtained with θ = 1

2 : the error is ≤ 5 ∗ 10−5.

For θ = 0 and θ = 1 the mismatch between yk and y(xk) is larger:
it is ≤ 3 ∗ 10−2. Question: WHY?

Tabulating y3(x) for x ∈ [0, 0.4] with step size h = 0.1, we get the
values of the “exact solution” at the mesh points:

k xk y(xk)

0 0 0

1 0.1 0.00500

2 0.2 0.01998

3 0.3 0.04488

4 0.4 0.07949

Table: Values of the “exact solution” at the mesh points

The “exact solution” is in good agreement with the numerical
results obtained with θ = 1

2 : the error is ≤ 5 ∗ 10−5.

For θ = 0 and θ = 1 the mismatch between yk and y(xk) is larger:
it is ≤ 3 ∗ 10−2. Question: WHY?

Tabulating y3(x) for x ∈ [0, 0.4] with step size h = 0.1, we get the
values of the “exact solution” at the mesh points:

k xk y(xk)

0 0 0

1 0.1 0.00500

2 0.2 0.01998

3 0.3 0.04488

4 0.4 0.07949

Table: Values of the “exact solution” at the mesh points

The “exact solution” is in good agreement with the numerical
results obtained with θ = 1

2 : the error is ≤ 5 ∗ 10−5.

For θ = 0 and θ = 1 the mismatch between yk and y(xk) is larger:
it is ≤ 3 ∗ 10−2. Question: WHY?

Error analysis of the θ-method

First we have to explain what we mean by error.

The exact solution of the initial-value problem (1), (2) is a
function of a continuously varying argument x ∈ [x0,XM], while
the numerical solution yn is only defined at the mesh points xn,
n = 0, . . . ,N, so it is a function of a “discrete” argument.

We shall compare these two functions by restricting y(x) to the
mesh points and comparing y(xn) with yn for n = 0, . . . ,N.

We define the global error e by

en = y(xn)− yn, n = 0, . . . ,N.

Error analysis of the θ-method

First we have to explain what we mean by error.

The exact solution of the initial-value problem (1), (2) is a
function of a continuously varying argument x ∈ [x0,XM], while
the numerical solution yn is only defined at the mesh points xn,
n = 0, . . . ,N, so it is a function of a “discrete” argument.

We shall compare these two functions by restricting y(x) to the
mesh points and comparing y(xn) with yn for n = 0, . . . ,N.

We define the global error e by

en = y(xn)− yn, n = 0, . . . ,N.

Error analysis of the θ-method

First we have to explain what we mean by error.

The exact solution of the initial-value problem (1), (2) is a
function of a continuously varying argument x ∈ [x0,XM], while
the numerical solution yn is only defined at the mesh points xn,
n = 0, . . . ,N, so it is a function of a “discrete” argument.

We shall compare these two functions by restricting y(x) to the
mesh points and comparing y(xn) with yn for n = 0, . . . ,N.

We define the global error e by

en = y(xn)− yn, n = 0, . . . ,N.

So let us consider Euler’s explicit method:

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1, y0 = given.

The quantity

Tn :=
y(xn+1)− y(xn)

h
− f (xn, y(xn)),

obtained by inserting the analytical solution y(x) into Euler’s
explicit method and dividing by h is called the consistency error
(or truncation error) of Euler’s explicit method.

It measures the extent to which the analytical solution fails to
satisfy the difference equation for Euler’s method.

So let us consider Euler’s explicit method:

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1, y0 = given.

The quantity

Tn :=
y(xn+1)− y(xn)

h
− f (xn, y(xn)),

obtained by inserting the analytical solution y(x) into Euler’s
explicit method and dividing by h is called the consistency error
(or truncation error) of Euler’s explicit method.

It measures the extent to which the analytical solution fails to
satisfy the difference equation for Euler’s method.

So let us consider Euler’s explicit method:

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1, y0 = given.

The quantity

Tn :=
y(xn+1)− y(xn)

h
− f (xn, y(xn)),

obtained by inserting the analytical solution y(x) into Euler’s
explicit method and dividing by h is called the consistency error
(or truncation error) of Euler’s explicit method.

It measures the extent to which the analytical solution fails to
satisfy the difference equation for Euler’s method.

As f (xn, y(xn)) = y ′(xn), by applying Taylor’s Theorem, it follows
that there exists a ξn ∈ (xn, xn+1) such that

Tn =
1

2
hy ′′(ξn),

where we have assumed that that f is a sufficiently smooth
function of two variables to ensure that y ′′ exists and is bounded on
the interval [x0,XM].

Since from the definition of Euler’s method

0 =
yn+1 − yn

h
− f (xn, yn),

subtracting this from the definition of the consistency error we get

en+1 = en + h[f (xn, y(xn))− f (xn, yn)] + hTn.

As f (xn, y(xn)) = y ′(xn), by applying Taylor’s Theorem, it follows
that there exists a ξn ∈ (xn, xn+1) such that

Tn =
1

2
hy ′′(ξn),

where we have assumed that that f is a sufficiently smooth
function of two variables to ensure that y ′′ exists and is bounded on
the interval [x0,XM]. Since from the definition of Euler’s method

0 =
yn+1 − yn

h
− f (xn, yn),

subtracting this from the definition of the consistency error we get

en+1 = en + h[f (xn, y(xn))− f (xn, yn)] + hTn.

Assuming that |yn − y0| ≤ YM the Lipschitz condition implies that

|en+1| ≤ (1 + hL)|en|+ h|Tn|, n = 0, . . . ,N − 1.

Now, let T = max0≤n≤N−1 |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT , n = 0, . . . ,N − 1.

By induction, and noting that 1 + hL ≤ ehL ,

|en| ≤ eL(xn−x0)|e0|+
T

L

(
eL(xn−x0) − 1

)
, n = 1, . . . ,N.

This estimate, together with the bound

|T | ≤ 1

2
hM2, M2 = max

x∈[x0,XM]
|y ′′(x)|,

yields

|en| ≤ eL(xn−x0)|e0|+
M2h

2L

(
eL(xn−x0) − 1

)
, n = 0, . . . ,N.

Assuming that |yn − y0| ≤ YM the Lipschitz condition implies that

|en+1| ≤ (1 + hL)|en|+ h|Tn|, n = 0, . . . ,N − 1.

Now, let T = max0≤n≤N−1 |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT , n = 0, . . . ,N − 1.

By induction, and noting that 1 + hL ≤ ehL ,

|en| ≤ eL(xn−x0)|e0|+
T

L

(
eL(xn−x0) − 1

)
, n = 1, . . . ,N.

This estimate, together with the bound

|T | ≤ 1

2
hM2, M2 = max

x∈[x0,XM]
|y ′′(x)|,

yields

|en| ≤ eL(xn−x0)|e0|+
M2h

2L

(
eL(xn−x0) − 1

)
, n = 0, . . . ,N.

Assuming that |yn − y0| ≤ YM the Lipschitz condition implies that

|en+1| ≤ (1 + hL)|en|+ h|Tn|, n = 0, . . . ,N − 1.

Now, let T = max0≤n≤N−1 |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT , n = 0, . . . ,N − 1.

By induction, and noting that 1 + hL ≤ ehL ,

|en| ≤ eL(xn−x0)|e0|+
T

L

(
eL(xn−x0) − 1

)
, n = 1, . . . ,N.

This estimate, together with the bound

|T | ≤ 1

2
hM2, M2 = max

x∈[x0,XM]
|y ′′(x)|,

yields

|en| ≤ eL(xn−x0)|e0|+
M2h

2L

(
eL(xn−x0) − 1

)
, n = 0, . . . ,N.

Assuming that |yn − y0| ≤ YM the Lipschitz condition implies that

|en+1| ≤ (1 + hL)|en|+ h|Tn|, n = 0, . . . ,N − 1.

Now, let T = max0≤n≤N−1 |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT , n = 0, . . . ,N − 1.

By induction, and noting that 1 + hL ≤ ehL ,

|en| ≤ eL(xn−x0)|e0|+
T

L

(
eL(xn−x0) − 1

)
, n = 1, . . . ,N.

This estimate, together with the bound

|T | ≤ 1

2
hM2, M2 = max

x∈[x0,XM]
|y ′′(x)|,

yields

|en| ≤ eL(xn−x0)|e0|+
M2h

2L

(
eL(xn−x0) − 1

)
, n = 0, . . . ,N.

By a similar argument one can show that, for the θ-method,

|en| ≤ |e0| exp

(
L
xn − x0
1− θLh

)
+
h

L

{∣∣∣∣12 − θ
∣∣∣∣M2 +

1

6
(1 + 3θ)hM3

}[
exp

(
L
xn − x0
1− θLh

)
− 1

]
,

for n = 0, . . . ,N, where now M3 = maxx∈[x0,XM] |y ′′′(x)|.

In the absence of rounding errors in the imposition of the initial
condition (2) we can suppose that e0 = y(x0)− y0 = 0. Assuming
that this is the case, we see that |en| = O(h2) for θ = 1

2 , while for
θ = 0 and θ = 1, and indeed for any θ 6= 1

2 , |en| = O(h) only.

This explains why in the tables the values yn of the numerical
solution computed with the trapezium-rule method (θ = 1

2) were
closer to the analytical solution y(xn) at the mesh points than
those obtained with the explicit and the implicit Euler methods.

By a similar argument one can show that, for the θ-method,

|en| ≤ |e0| exp

(
L
xn − x0
1− θLh

)
+
h

L

{∣∣∣∣12 − θ
∣∣∣∣M2 +

1

6
(1 + 3θ)hM3

}[
exp

(
L
xn − x0
1− θLh

)
− 1

]
,

for n = 0, . . . ,N, where now M3 = maxx∈[x0,XM] |y ′′′(x)|.

In the absence of rounding errors in the imposition of the initial
condition (2) we can suppose that e0 = y(x0)− y0 = 0. Assuming
that this is the case, we see that |en| = O(h2) for θ = 1

2 , while for
θ = 0 and θ = 1, and indeed for any θ 6= 1

2 , |en| = O(h) only.

This explains why in the tables the values yn of the numerical
solution computed with the trapezium-rule method (θ = 1

2) were
closer to the analytical solution y(xn) at the mesh points than
those obtained with the explicit and the implicit Euler methods.

By a similar argument one can show that, for the θ-method,

|en| ≤ |e0| exp

(
L
xn − x0
1− θLh

)
+
h

L

{∣∣∣∣12 − θ
∣∣∣∣M2 +

1

6
(1 + 3θ)hM3

}[
exp

(
L
xn − x0
1− θLh

)
− 1

]
,

for n = 0, . . . ,N, where now M3 = maxx∈[x0,XM] |y ′′′(x)|.

In the absence of rounding errors in the imposition of the initial
condition (2) we can suppose that e0 = y(x0)− y0 = 0. Assuming
that this is the case, we see that |en| = O(h2) for θ = 1

2 , while for
θ = 0 and θ = 1, and indeed for any θ 6= 1

2 , |en| = O(h) only.

This explains why in the tables the values yn of the numerical
solution computed with the trapezium-rule method (θ = 1

2) were
closer to the analytical solution y(xn) at the mesh points than
those obtained with the explicit and the implicit Euler methods.

	Euler's method and its relatives: the -method
	Euler's method and its relatives: the -method
	Euler's method and its relatives: the -method

