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One-step methods

Consider the initial-value problem

y ′ = f (x , y), x ∈ [x0,XM ], (1)

y(x0) = y0. (2)

The simplest example of a one-step method for the numerical
solution of the initial-value problem (1), (2) is Euler’s method.1

Euler’s method. Suppose that the initial-value problem (1), (2) is
to be solved on the interval [x0,XM ]. We divide this interval by the
mesh-points xn = x0 + nh, n = 0, . . . ,N, where h = (XM − x0)/N
and N is a positive integer; h is called the step size.

1Leonard Euler (1707–1783)
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Suppose that, for each n, we seek a numerical approximation yn to
y(xn), the value of the analytical solution at the mesh point xn.

As y(x0) = y0 is known, suppose that we have already computed
yn, up to some n, 0 ≤ n ≤ N − 1; we define

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1.

Thus, taking in succession n = 0, 1, . . . ,N − 1, one step at a time,
the approximate values yn at the mesh points xn can be easily
obtained. This numerical method is known as Euler’s method.
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A simple derivation of Euler’s method proceeds by first integrating
the differential equation (1) between two consecutive mesh points
xn and xn+1 to deduce that, for n = 0, . . . ,N − 1,

y(xn+1) = y(xn) +

∫ xn+1

xn

f (x , y(x))dx .

Next,

apply the numerical integration rule∫ xn+1

xn

g(x)dx ≈ hg(xn),

called the rectangle rule, with g(x) = f (x , y(x)), to get

y(xn+1) ≈ y(xn)+hf (xn, y(xn)), n = 0, . . .N−1, y(x0) = y0.

This then motivates the definition of Euler’s method.
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This can be generalised by replacing the rectangle rule with a
one-parameter family of integration rules of the form∫ xn+1

xn

g(x)dx ≈ h [(1− θ)g(xn) + θg(xn+1)] ,

with θ ∈ [0, 1] a parameter.

Applying this with g(x) = f (x , y(x))
we find that, for n = 0, . . . ,N − 1,

y(xn+1) ≈ y(xn) + h [(1− θ)f (xn, y(xn)) + θf (xn+1, y(xn+1))] ,

y(x0) = y0.

This motivates the definition of the following one-parameter family
of methods: with y0 given, define

yn+1 = yn+h [(1− θ)f (xn, yn) + θf (xn+1, yn+1)] , n = 0, . . . ,N−1,

parametrised by θ ∈ [0, 1], called the θ-method.
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Now, for θ = 0 we recover Euler’s method. For θ = 1, and y0
specified by (2), we get

yn+1 = yn + hf (xn+1, yn+1), n = 0, . . . ,N − 1,

referred to as the implicit Euler method since,

unlike Euler’s
method considered above, it requires the solution of an implicit
equation in order to determine yn+1, given yn.

Euler’s method is sometimes called the explicit Euler method.

The scheme for θ = 1
2 is also of interest: y0 is supplied by (2) and

subsequent values yn+1 are computed from

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

this is called the trapezium rule method.
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A further possibility, instead of the trapezium rule method,

yn+1 = yn +
1

2
h [f (xn, yn) + f (xn+1, yn+1)] , n = 0, . . . ,N − 1;

is the following implicit one-step method

yn+1 = yn + h f

(
xn + xn+1

2
,
yn + yn+1

2

)
, n = 0, . . . ,N − 1;

called the implicit midpoint rule.

Remark
All of these methods can be easily extended to initial-value
problems for systems of differential equations of the form

y′ = f(x , y),

y(x0) = y0,

by replacing y with y and f with f throughout.
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Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√
y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]
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Example

Given the initial-value problem y ′ = x − y2, y(0) = 0, on the
interval of x ∈ [0, 0.4], we compute an approximate solution using
the θ-method, for θ = 0, 12 , 1, with step size h = 0.1.

For the two implicit methods, corresponding to θ = 1
2 and θ = 1,

the nonlinear equations were solved by using a fixed-point iteration.

k xk yk for θ = 0 yk for θ = 1
2 yk for θ = 1

0 0 0 0 0

1 0.1 0 0.00500 0.00999

2 0.2 0.01000 0.01998 0.02990

3 0.3 0.02999 0.04486 0.05955

4 0.4 0.05990 0.07944 0.09857

Table: The values of the numerical solution at the mesh points
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For comparison, we also compute the values of the analytical
solution y(x) at the mesh points xn = 0.1 ∗ n, n = 0, . . . , 4.

As the
solution is not available in closed form, we use a Picard iteration to
calculate an accurate approximation to the analytical solution on
the interval [0, 0.4] and call this the “exact solution”:

y0(x) ≡ 0, yk(x) =

∫ x

0

(
ξ − y2k−1(ξ)

)
dξ, k = 1, 2, . . . .

Hence,

y0(x) ≡ 0,

y1(x) =
1

2
x2,

y2(x) =
1

2
x2 − 1

20
x5,

y3(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11.

It is easy to prove by induction that

y(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11 + O

(
x14
)
.
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Tabulating y3(x) for x ∈ [0, 0.4] with step size h = 0.1, we get the
values of the “exact solution” at the mesh points:

k xk y(xk)

0 0 0

1 0.1 0.00500

2 0.2 0.01998

3 0.3 0.04488

4 0.4 0.07949

Table: Values of the “exact solution” at the mesh points

The “exact solution” is in good agreement with the numerical
results obtained with θ = 1

2 : the error is ≤ 5 ∗ 10−5.

For θ = 0 and θ = 1 the mismatch between yk and y(xk) is larger:
it is ≤ 3 ∗ 10−2. Question: WHY?
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Error analysis of the θ-method

First we have to explain what we mean by error.

The exact solution of the initial-value problem (1), (2) is a
function of a continuously varying argument x ∈ [x0,XM ], while
the numerical solution yn is only defined at the mesh points xn,
n = 0, . . . ,N, so it is a function of a “discrete” argument.

We shall compare these two functions by restricting y(x) to the
mesh points and comparing y(xn) with yn for n = 0, . . . ,N.

We define the global error e by

en = y(xn)− yn, n = 0, . . . ,N.
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So let us consider Euler’s explicit method:

yn+1 = yn + hf (xn, yn), n = 0, . . . ,N − 1, y0 = given.

The quantity

Tn :=
y(xn+1)− y(xn)

h
− f (xn, y(xn)),

obtained by inserting the analytical solution y(x) into Euler’s
explicit method and dividing by h is called the consistency error
(or truncation error) of Euler’s explicit method.

It measures the extent to which the analytical solution fails to
satisfy the difference equation for Euler’s method.
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As f (xn, y(xn)) = y ′(xn), by applying Taylor’s Theorem, it follows
that there exists a ξn ∈ (xn, xn+1) such that

Tn =
1

2
hy ′′(ξn),

where we have assumed that that f is a sufficiently smooth
function of two variables to ensure that y ′′ exists and is bounded on
the interval [x0,XM ].

Since from the definition of Euler’s method

0 =
yn+1 − yn

h
− f (xn, yn),

subtracting this from the definition of the consistency error we get

en+1 = en + h[f (xn, y(xn))− f (xn, yn)] + hTn.
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Assuming that |yn − y0| ≤ YM the Lipschitz condition implies that

|en+1| ≤ (1 + hL)|en|+ h|Tn|, n = 0, . . . ,N − 1.

Now, let T = max0≤n≤N−1 |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT , n = 0, . . . ,N − 1.

By induction, and noting that 1 + hL ≤ ehL ,

|en| ≤ eL(xn−x0)|e0|+
T

L

(
eL(xn−x0) − 1

)
, n = 1, . . . ,N.

This estimate, together with the bound

|T | ≤ 1

2
hM2, M2 = max

x∈[x0,XM ]
|y ′′(x)|,

yields

|en| ≤ eL(xn−x0)|e0|+
M2h

2L

(
eL(xn−x0) − 1

)
, n = 0, . . . ,N.
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By a similar argument one can show that, for the θ-method,

|en| ≤ |e0| exp

(
L
xn − x0
1− θLh

)
+
h

L

{∣∣∣∣12 − θ
∣∣∣∣M2 +

1

6
(1 + 3θ)hM3

}[
exp

(
L
xn − x0
1− θLh

)
− 1

]
,

for n = 0, . . . ,N, where now M3 = maxx∈[x0,XM ] |y ′′′(x)|.

In the absence of rounding errors in the imposition of the initial
condition (2) we can suppose that e0 = y(x0)− y0 = 0. Assuming
that this is the case, we see that |en| = O(h2) for θ = 1

2 , while for
θ = 0 and θ = 1, and indeed for any θ 6= 1

2 , |en| = O(h) only.

This explains why in the tables the values yn of the numerical
solution computed with the trapezium-rule method (θ = 1

2) were
closer to the analytical solution y(xn) at the mesh points than
those obtained with the explicit and the implicit Euler methods.
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