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General one-step methods

Definition
A one-step method is a function Ψ that takes the triplet

(ξ, η; h) ∈ R× R× R>0

and a function f , and computes an approximation

Ψ(ξ, η; h, f ) ∈ R of y(ξ + h),

where y(ξ + h) is the value at x = ξ + h of the solution y to the
initial-value problem

y ′(x) = f (x , y(x)), y(ξ) = η.

Remark. The step size (mesh size) h may need to be assumed to
be sufficiently small for Ψ to be well-defined.
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Example

In the case of the implicit Euler method

yn+1 = yn + hf (xn+1, yn+1)

the function Ψ is defined implicitly, by

Ψ(ξ, η; h, f ) = η + hf (ξ + h,Ψ(ξ, η; h, f )).

Let f satisfy the Lipschitz condition with Lipschitz constant L.

The Contraction Mapping Theorem implies that, given a pair
(ξ, η) ∈ R2 and h ∈ (0, 1/L), there exists a unique Ψ(ξ, η; h, f )
in R satisfying this implicit relationship.

Therefore, for such a “sufficiently small” h, the function Ψ
associated with the implicit Euler method is well-defined.
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Example

In the case of a general explicit one-step method

Ψ(ξ, η; h, f ) = η + hΦ(ξ, η; h, f ),

where Φ(ξ, η; h, f ) can be explicitly computed without solving
implicit equations in terms of ξ, η, h, and f .

Example

For the explicit Euler method

yn+1 = yn + hf (xn, yn)

we have that
Ψ(ξ, η; h, f ) = η + hf (ξ, η).

Remark. In what follows, we shall not indicate the dependence of
Φ(ξ, η; h, f ) on f , and will write Φ(ξ, η; h) instead for simplicity.
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General explicit one-step method

A general explicit one-step method is of the form:

yn+1 = yn+hΦ(xn, yn; h), n = 0, . . . ,N−1, y0 = y(x0) [= given],

where Φ(·, ·; ·) is a continuous function of its variables.

Example

For the improved Euler method

yn+1 = yn +
h

2
[f (xn, yn) + f (xn + h, yn + hf (xn, yn))]

we have that

Φ(ξ, η; h) =
1

2
[f (ξ, η) + f (ξ + h, η + hf (ξ, η))] .
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In order to assess the accuracy of a one-step method we define the
global error, en, by

en := y(xn)− yn.

We define the consistency error (also called truncation error), Tn,
of the method by

Tn :=
y(xn+1)− y(xn)

h
− Φ(xn, y(xn); h). (1)

Remark. Note that, by definition, the numerical solution satisfies:

0 =
yn+1 − yn

h
− Φ(xn, yn; h). (2)
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Theorem
Consider a general explicit one-step method where, in addition to
being a continuous function of its arguments, Φ is assumed to
satisfy a Lipschitz condition with respect to its second argument;
i.e., there exists a constant LΦ > 0 such that, for 0 ≤ h ≤ h0 and
for the same region R as in Picard’s Theorem (cf. Lecture 1),

|Φ(x , y ; h)− Φ(x , z ; h)| ≤ LΦ|y − z |, for (x , y), (x , z) in R.

Then, assuming that |yn − y0| ≤ YM , it follows that

|en| ≤ eLΦ(xn−x0)|e0|+

[
eLΦ(xn−x0) − 1

LΦ

]
T , n = 0, . . . ,N,

where T = max0≤n≤N−1 |Tn|.
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Proof: By subtracting eq. (2) from eq. (1), we have

en+1 = en + h[Φ(xn, y(xn); h)− Φ(xn, yn; h)] + hTn.

As (xn, y(xn)), (xn, yn) ∈ R, the Lipschitz condition implies

|en+1| ≤ |en|+ hLΦ|en|+ h|Tn|, n = 0, . . . ,N − 1.

That is,

|en+1| ≤ (1 + hLΦ)|en|+ h|Tn|, n = 0, . . . ,N − 1.

Hence, letting T := max0≤n≤N−1 |Tn|, we have that

|e1| ≤ (1 + hLΦ)|e0|+ hT ,

|e2| ≤ (1 + hLΦ)2|e0|+ h[1 + (1 + hLΦ)]T ,

|e3| ≤ (1 + hLΦ)3|e0|+ h[1 + (1 + hLΦ) + (1 + hLΦ)2]T ,

etc.

|en| ≤ (1 + hLΦ)n|e0|+ [(1 + hLΦ)n − 1]T/LΦ.

As 1 + hLΦ ≤ exp(hLΦ), we obtain the stated bound. �
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Example

Consider the initial-value problem y ′ = tan−1 y , y(0) = y0, and
suppose that this is solved by the explicit Euler method.

The aim of the exercise is to quantify the size of the associated
global error; thus, we need to find LΦ and T .

Here f (x , y) = tan−1 y , so by the Mean-Value Theorem

|f (x , y)− f (x , z)| =

∣∣∣∣∂f∂y (x , η) (y − z)

∣∣∣∣ ,
where η lies between y and z . In our case∣∣∣∣∂f∂y

∣∣∣∣ = |(1 + y2)−1| ≤ 1,

and therefore LΦ = 1.
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As T = max0≤n≤N−1 |Tn|, and for Euler’s method Tn = 1
2hy

′′(ξn),
where ξn ∈ (xn, xn+1) (cf. Lecture 2), we need to obtain a bound
on |y ′′| (without actually solving the initial-value problem).

By
differentiating both sides of the differential equation w.r.t. x :

y ′′ =
d

dx
(tan−1 y) = (1 + y2)−1 dy

dx
= (1 + y2)−1 tan−1 y .

Thus |y ′′(x)| ≤ 1
2π, whereby T = 1

4πh. Inserting this and LΦ = 1
into the error bound from the last theorem (note that x0 = 0):

|en| ≤ exn |e0|+
1

4
π (exn − 1) h, n = 0, . . . ,N.

In particular if we assume that no error has been committed
initially (i.e. e0 = 0), we have that

|en| ≤
1

4
π (exn − 1) h, n = 0, . . . ,N.



As T = max0≤n≤N−1 |Tn|, and for Euler’s method Tn = 1
2hy

′′(ξn),
where ξn ∈ (xn, xn+1) (cf. Lecture 2), we need to obtain a bound
on |y ′′| (without actually solving the initial-value problem). By
differentiating both sides of the differential equation w.r.t. x :

y ′′ =
d

dx
(tan−1 y) = (1 + y2)−1 dy

dx
= (1 + y2)−1 tan−1 y .

Thus |y ′′(x)| ≤ 1
2π, whereby T = 1

4πh. Inserting this and LΦ = 1
into the error bound from the last theorem (note that x0 = 0):

|en| ≤ exn |e0|+
1

4
π (exn − 1) h, n = 0, . . . ,N.

In particular if we assume that no error has been committed
initially (i.e. e0 = 0), we have that

|en| ≤
1

4
π (exn − 1) h, n = 0, . . . ,N.



As T = max0≤n≤N−1 |Tn|, and for Euler’s method Tn = 1
2hy

′′(ξn),
where ξn ∈ (xn, xn+1) (cf. Lecture 2), we need to obtain a bound
on |y ′′| (without actually solving the initial-value problem). By
differentiating both sides of the differential equation w.r.t. x :

y ′′ =
d

dx
(tan−1 y) = (1 + y2)−1 dy

dx
= (1 + y2)−1 tan−1 y .

Thus |y ′′(x)| ≤ 1
2π, whereby T = 1

4πh. Inserting this and LΦ = 1
into the error bound from the last theorem (note that x0 = 0):

|en| ≤ exn |e0|+
1

4
π (exn − 1) h, n = 0, . . . ,N.

In particular if we assume that no error has been committed
initially (i.e. e0 = 0), we have that

|en| ≤
1

4
π (exn − 1) h, n = 0, . . . ,N.



As T = max0≤n≤N−1 |Tn|, and for Euler’s method Tn = 1
2hy

′′(ξn),
where ξn ∈ (xn, xn+1) (cf. Lecture 2), we need to obtain a bound
on |y ′′| (without actually solving the initial-value problem). By
differentiating both sides of the differential equation w.r.t. x :

y ′′ =
d

dx
(tan−1 y) = (1 + y2)−1 dy

dx
= (1 + y2)−1 tan−1 y .

Thus |y ′′(x)| ≤ 1
2π, whereby T = 1

4πh. Inserting this and LΦ = 1
into the error bound from the last theorem (note that x0 = 0):

|en| ≤ exn |e0|+
1

4
π (exn − 1) h, n = 0, . . . ,N.

In particular if we assume that no error has been committed
initially (i.e. e0 = 0), we have that

|en| ≤
1

4
π (exn − 1) h, n = 0, . . . ,N.



Thus, given a positive tolerance TOL we can ensure that the error
between the (unknown) analytical solution and its numerical
approximation over an interval [x0,XM ] (in this example x0 = 0)
does not exceed TOL, by choosing a positive step size h such that

h ≤ 4

π
(eXM − 1)−1 TOL.

For such h we shall have |y(xn)− yn| = |en| ≤ TOL for each
n = 0, . . . ,N, as required. �
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Consistency

Definition
A general one-step method is said to be consistent with the ODE
y ′ = f (x , y) if the associated consistency error Tn is such that for
any ε > 0 there exists a positive h(ε) for which |Tn| < ε for
0 < h < h(ε) and any pair of points (xn, y(xn)), (xn+1, y(xn+1))
on any solution curve contained in R (cf. Lecture 1).



As we have assumed that the function Φ(·, ·; ·) is continuous, and
also y ′ is a continuous function of x on [x0,XM ], it follows that

lim
h→0, xn→x∈[x0,XM ]

Tn = y ′(x)− Φ(x , y(x); 0)

= f (x , y(x))− Φ(x , y(x); 0).

So, a general explicit one-step method is consistent if, and only if,

Φ(x , y ; 0) ≡ f (x , y).

Now we are ready to state a convergence theorem for the general
one-step method.
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Convergence

Theorem
Suppose that the solution of the initial-value problem y ′ = f (x , y),
y(x0) = y0 lies in R (cf. Lecture 1) as does its approximation
generated from yn+1 = yn + hΦ(xn, yn; h) when h ≤ h0.

Let
Φ(·, ·; ·) be uniformly continuous on R× [0, h0] and satisfy the
consistency condition Φ(x , y ; 0) = f (x , y) and the Lipschitz
condition

|Φ(x , y ; h)− Φ(x , z ; h)| ≤ LΦ|y − z | on R× [0, h0].

Then, if successive approximation sequences (yn), generated for
xn = x0 + nh, n = 1, 2, . . . ,N, are obtained from this one-step
method with successively smaller values of h, each less than h0,
we have convergence of the numerical solution to the solution of
the initial-value problem in the sense that

|y(x)− yn| → 0 as h→ 0, xn → x ∈ [x0,XM ].
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we have convergence of the numerical solution to the solution of
the initial-value problem in the sense that

|y(x)− yn| → 0 as h→ 0, xn → x ∈ [x0,XM ].
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Proof: We need to show that

|y(x)− yn| → 0 as h→ 0, xn → x ∈ [x0,XM ].

However, by the triangle inequality,

|y(x)− yn| ≤ |y(x)− y(xn)|+ |y(xn)− yn|.

The first term on the r.h.s. side tends to 0 as xn → x ∈ [x0,XM ]
thanks to the continuity of y , guaranteed by Picard’s theorem.

The second term on the r.h.s. side tends to 0 by the previous
theorem, thanks to the assumed consistency of the method, which
implies that

lim
h→0, xn→x∈[x0,XM ]

Tn = 0,

and because e0 = y(x0)− y0 = 0. �
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Order of accuracy

We saw earlier that for Euler’s method the absolute value of the
consistency error Tn is bounded above by a constant multiple of
the step size h, that is

|Tn| ≤ Kh for 0 < h ≤ h0,

where K is a positive constant, independent of h.

However there are other one-step methods (a class of which, called
Runge–Kutta methods, will be considered in the next lecture) for
which we can do better.

To quantify the asymptotic rate of decay of the consistency error as
the step size h tends to zero, we introduce the following definition.
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Definition
The one-step method yn+1 = yn + hΦ(xn, yn; h) is said to have
order of accuracy p, if p is the largest positive integer such that,
for any sufficiently smooth solution curve (x , y(x)) in R of the
initial-value problem y ′ = f (x , y), y(x0) = y0, there exist constants
K and h0 such that

|Tn| ≤ Khp for 0 < h ≤ h0

for any pair of points (xn, y(xn)), (xn+1, y(xn+1)) on the solution
curve.

Next, we shall focus on a family of explicit one-step methods which
have p-th order of accuracy, p ≥ 1: explicit Runge–Kutta methods.
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