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Absolute stability of Runge–Kutta methods
It is instructive to consider the model problem

y ′ = λy , y(0) = y0 ( 6= 0), (1)

with λ ∈ R<0. The analytical solution to this initial value problem,

y(x) = y0 exp(λx),

converges to 0 at an exponential rate as x → +∞.

Exercise: Show that if λ is a complex number with negative real
part then the solution y(x) ≡ 0 of the above initial value problem,
corresponding to y0 = 0, is asymptotically stable (cf. Lecture 1).

Question: Under what conditions on the step size h does a
Runge–Kutta method reproduce this behaviour?

For simplicity we restrict ourselves to the case of R-stage methods
of order of accuracy R, with 1 ≤ R ≤ 4.
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R = 1

The only explicit one-stage first-order accurate Runge–Kutta
method is Euler’s explicit method.

Applying it to (1) yields:

yn+1 = (1 + h̄)yn, n ≥ 0,

where h̄ := λh. Thus,

yn = (1 + h̄)ny0.

The sequence {yn}∞n=0 will converge to 0 if, and only if,

|1 + h̄| < 1, yielding h̄ ∈ (−2, 0).

For such h the explicit Euler method is said to be absolutely
stable and the interval (−2, 0) is referred to as the interval of
absolute stability of the method.
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R = 2
This corresponds to two-stage second-order Runge–Kutta methods:

yn+1 = yn + h(c1k1 + c2k2),

where

k1 = f (xn, yn), k2 = f (xn + a2h, yn + b21hk1)

with

c1 + c2 = 1, a2c2 = b21c2 =
1

2
.

Applying this to (1) yields,

yn+1 =

(
1 + h̄ +

1

2
h̄2
)
yn, n ≥ 0,

and therefore

yn =

(
1 + h̄ +

1

2
h̄2
)n

y0.

Hence the method is absolutely stable if, and only if,∣∣1 + h̄ +
1

2
h̄2
∣∣ < 1, i.e. when h̄ ∈ (−2, 0).
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R = 3

An analogous argument shows that

yn+1 =

(
1 + h̄ +

1

2
h̄2 +

1

6
h̄3
)
yn.

Demanding that ∣∣∣∣1 + h̄ +
1

2
h̄2 +

1

6
h̄3
∣∣∣∣ < 1

then yields the interval of absolute stability: h̄ ∈ (−2.51, 0).



R = 4

We have that

yn+1 =

(
1 + h̄ +

1

2
h̄2 +

1

6
h̄3 +

1

24
h̄4
)
yn,

and the associated interval of absolute stability is h̄ ∈ (−2.78, 0).



R ≥ 5

By applying the Runge–Kutta method to the model problem (1)
still results in a recursion of the form

yn+1 = AR(h̄)yn, n ≥ 0.

However, unlike the case when R = 1, 2, 3, 4, in addition to h̄
now AR(h̄) also depends on the coefficients of the Runge–Kutta
method.

By a convenient choice of the free parameters the associated
interval of absolute stability may be maximised.

Remark. The analysis above can be extended to the case when
λ ∈ C and Re(λ) < 0.
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Regions of absolute stability of RK methods plotted in the complex plane

Consider y ′ = λy , y(0) = y0(6= 0), with λ ∈ C, Re(λ) < 0.
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Linear multi-step methods

While Runge–Kutta methods present an improvement over Euler’s
method in terms of accuracy, this comes at added computational
cost, which may be more excessive than seems necessary.

Example

RK4 involves 4 function evaluations per step. For comparison,
by considering three consecutive points xn−1, xn = xn−1 + h,
xn+1 = xn−1 + 2h, integrating the ODE between xn−1 and xn+1,

y(xn+1) = y(xn−1) +

∫ xn+1

xn−1

f (x , y(x))dx

≈ y(xn−1) +
1

3
h [f (xn−1, y(xn−1)) + 4f (xn, y(xn)) + f (xn+1, y(xn+1))]

thanks to Simpson’s rule. This leads to the method

yn+1 = yn−1 +
1

3
h [f (xn−1, yn−1) + 4f (xn, yn) + f (xn+1, yn+1)] .
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In contrast with one-step methods, where only a single value yn
was needed to compute the next approximation yn+1, here we need
two preceding values, yn and yn−1 to be able to calculate yn+1, and
therefore the method in the last example is not a one-step method.

This is an example of a linear multi-step method.
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Given a sequence of equally spaced mesh points (xn) with step size
h, we consider the general linear k-step method

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (xn+j , yn+j), (2)

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants.

In order to avoid degenerate cases, we shall assume that αk 6= 0
and that α0 and β0 are not both equal to zero.

If βk = 0 then yn+k is obtained explicitly from previous values of yj
and f (xj , yj), and the k-step method is then said to be explicit.

If βk 6= 0 then yn+k appears on both sides; because of this implicit
dependence on yn+k the method is then called implicit.

The numerical method (2) is called linear because it involves only
linear combinations of the {yn} and the {f (xn, yn)}; for simplicity,
we shall write fn instead of f (xn, yn).



Given a sequence of equally spaced mesh points (xn) with step size
h, we consider the general linear k-step method

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (xn+j , yn+j), (2)

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants.
In order to avoid degenerate cases, we shall assume that αk 6= 0
and that α0 and β0 are not both equal to zero.

If βk = 0 then yn+k is obtained explicitly from previous values of yj
and f (xj , yj), and the k-step method is then said to be explicit.

If βk 6= 0 then yn+k appears on both sides; because of this implicit
dependence on yn+k the method is then called implicit.

The numerical method (2) is called linear because it involves only
linear combinations of the {yn} and the {f (xn, yn)}; for simplicity,
we shall write fn instead of f (xn, yn).



Given a sequence of equally spaced mesh points (xn) with step size
h, we consider the general linear k-step method

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (xn+j , yn+j), (2)

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants.
In order to avoid degenerate cases, we shall assume that αk 6= 0
and that α0 and β0 are not both equal to zero.

If βk = 0 then yn+k is obtained explicitly from previous values of yj
and f (xj , yj), and the k-step method is then said to be explicit.

If βk 6= 0 then yn+k appears on both sides; because of this implicit
dependence on yn+k the method is then called implicit.

The numerical method (2) is called linear because it involves only
linear combinations of the {yn} and the {f (xn, yn)}; for simplicity,
we shall write fn instead of f (xn, yn).



Given a sequence of equally spaced mesh points (xn) with step size
h, we consider the general linear k-step method

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (xn+j , yn+j), (2)

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants.
In order to avoid degenerate cases, we shall assume that αk 6= 0
and that α0 and β0 are not both equal to zero.

If βk = 0 then yn+k is obtained explicitly from previous values of yj
and f (xj , yj), and the k-step method is then said to be explicit.

If βk 6= 0 then yn+k appears on both sides; because of this implicit
dependence on yn+k the method is then called implicit.

The numerical method (2) is called linear because it involves only
linear combinations of the {yn} and the {f (xn, yn)}; for simplicity,
we shall write fn instead of f (xn, yn).



Given a sequence of equally spaced mesh points (xn) with step size
h, we consider the general linear k-step method

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (xn+j , yn+j), (2)

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants.
In order to avoid degenerate cases, we shall assume that αk 6= 0
and that α0 and β0 are not both equal to zero.

If βk = 0 then yn+k is obtained explicitly from previous values of yj
and f (xj , yj), and the k-step method is then said to be explicit.

If βk 6= 0 then yn+k appears on both sides; because of this implicit
dependence on yn+k the method is then called implicit.

The numerical method (2) is called linear because it involves only
linear combinations of the {yn} and the {f (xn, yn)}; for simplicity,
we shall write fn instead of f (xn, yn).



Example

a) Euler’s method is a trivial case: it is an explicit linear one-step
method.

The implicit Euler method

yn+1 = yn + hf (xn+1, yn+1)

is an implicit linear one-step method.

b) The trapezium method

yn+1 = yn +
1

2
h[fn+1 + fn]

is also an implicit linear one-step method.

c) The four-step Adams–Bashforth method

yn+4 = yn+3 +
1

24
h[55fn+3 − 59fn+2 + 37fn+1 − 9fn]

is an explicit linear four-step method.
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