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Analysis of linear multi-step methods

Consider the general linear k-step method

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (xn+j , yn+j),

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants,
αk 6= 0 and α2

0 + β20 6= 0.

We introduce the concepts of

I stability,

I consistency, and

I convergence.
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Zero-stability

We need k starting values, y0, . . . , yk−1, before we can apply a
linear k-step method to an initial-value problem. Of these, y0 is
given by the initial condition y(x0) = y0, but y1, . . . , yk−1, have to
be computed by other means (e.g. by using a Runge–Kutta
method). Thus, the starting values will contain numerical errors.

Question: How do these errors affect further approximations yn,
n ≥ k , which are calculated by means of a k-step method.

We consider the ‘stability’ of the numerical method with respect to
‘small perturbations’ in the starting conditions.
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Definition
A linear k-step method for the ordinary differential equation
y ′ = f (x , y) is said to be zero-stable if there exists a constant K
such that, for any two sequences (yn) and (ŷn), which have been
generated by the same formulae but with different initial data
y0, y1, . . . , yk−1 and ŷ0, ŷ1, . . . , ŷk−1, respectively, we have

|yn − ŷn| ≤ K max{|y0 − ŷ0|, |y1 − ŷ1|, . . . , |yk−1 − ŷk−1|}

for xn ≤ XM , and as h tends to 0.



Remark
We shall prove that zero-stability of a linear multistep method can
be checked by considering its behaviour when applied to the trivial
differential equation y ′ = 0; it is for this reason that the kind of
stability expressed in Definition 1 is called zero stability.

While Definition 1 is expressive in the sense that it conforms with
the intuitive notion of stability whereby “small perturbations at
input give rise to small perturbations at output”, it would be
tedious to verify the zero-stability of a linear multi-step method
using Definition 1; thus we shall formulate an algebraic equivalent
of zero-stability, known as the root condition, to simplify this task.
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Given the linear k-step method we consider its first and second
characteristic polynomial, respectively

ρ(z) =
k∑

j=0

αjz
j ,

σ(z) =
k∑

j=0

βjz
j ,

where, as before, we assume that

αk 6= 0, α2
0 + β20 6= 0.



Theorem (Root condition)

A linear multi-step method is zero-stable for any ordinary
differential equation y ′ = f (x , y), where f satisfies the Lipschitz
condition, if, and only if, its first characteristic polynomial has
zeros inside the closed unit disc, with any which lie on the unit
circle being simple.



Proof:

Necessity. Consider the linear k-step method, applied to y ′ = 0:

αkyn+k + αk−1yn+k−1 + · · ·+ α1yn+1 + α0yn = 0. (1)

The general solution of this kth order linear difference equation is1

yn =
∑
s

ps(n)zns ,

where zs is a zero of the first characteristic polynomial ρ(z) and
the polynomial ps(·) has degree one less than the multiplicity of
the zero.

1See Lemma 12.1 on p.333 of E. Süli & D.F. Mayers: An Introduction to
Numerical Analysis, CUP.
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Clearly, if |zs | > 1 then there are starting values for which the
corresponding solutions grow like |zs |n and if |zs | = 1 and its
multiplicity is ms > 1 then there are solutions growing like nms−1.
In either case there are solutions that grow unbounded as n→∞,
i.e. as h→ 0 with nh fixed.

Considering starting data y0, y1, . . . , yk−1 which give rise to such
an unbounded solution (yn), and starting data

ŷ0 = ŷ1 = · · · = ŷk−1 = 0

for which the corresponding solution of (1) is (ŷn) with ŷn = 0 for
all n, we see that the inequality in the definition of zero stability
cannot hold.

To summarise, if the root condition is violated then the method is
not zero-stable.
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for which the corresponding solution of (1) is (ŷn) with ŷn = 0 for
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Sufficiency. The proof that the root condition is sufficient for
zero-stability is long and technical, and will be omitted here. For
details, see, for example, P. Henrici, Discrete Variable Methods in
Ordinary Differential Equations, Wiley, New York, 1962. �



Example

a) The explicit and implicit Euler methods have first
characteristic polynomial ρ(z) = z − 1 with simple root z = 1,
so both methods are zero-stable.
The same is true of the trapezium method.

b) The Adams–Bashforth method considered in an earlier
example has the first characteristic polynomial
ρ(z) = z3(z − 1) and is therefore zero-stable.

c) The three-step (sixth order consistent) linear multi-step
method

11yn+3+27yn+2−27yn+1−11yn = 3h[fn+3+9fn+2+9fn+1+fn]

is not zero-stable. Indeed, the associated first characteristic
polynomial ρ(z) = 11z3 + 27z2 − 27z − 11 has roots at
z1 = 1, z2 ≈ −0.3189, z3 ≈ −3.1356, so |z3| > 1.
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Example

(a) Linear k-step methods for which the first characteristic
polynomial has the form ρ(z) = zk − zk−1 are called Adams
methods.

(b) Explicit Adams methods are referred to as Adams–Bashforth
methods, while implicit Adams methods are termed
Adams–Moulton methods.

(c) Linear k-step methods for which ρ(z) = zk − zk−2 are called
Nyström methods if explicit and Milne–Simpson methods
if implicit.

All these methods are zero-stable.
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Consistency

Suppose that y(x) is a solution of the ordinary differential equation
y ′ = f (x , y). Then the consistency error of a k-step method is:

Tn =

∑k
j=0 [αjy(xn+j)− hβjy

′(xn+j)]

h
∑k

j=0 βj
. (2)

The definition requires implicitly that σ(1) =
∑k

j=0 βj 6= 0.

Remark
As in the case of one-step methods, the consistency error can be
thought of as the residual that is obtained by inserting the solution
of the differential equation into the formula for the k-step method
and scaling this residual appropriately (in this case dividing
through by h

∑k
j=0 βj) so that Tn resembles y ′ − f (x , y(x)).
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Definition
A k-step method is said to be consistent with the differential
equation y ′ = f (x , y) if the consistency error defined by (2) is such
that for any ε > 0 there exists an h(ε) for which

|Tn| < ε for 0 < h < h(ε),

and for any (k + 1) points (xn, y(xn)), . . . , (xn+k , y(xn+k)) on any
solution curve in R of y ′ = f (x , y), y(x0) = y0.



Suppose that the exact solution y is sufficiently smooth, expand
y(xn+j) and y ′(xn+j) into a Taylor series about the point xn and
substitute these expansions into the numerator in (2). Thus,

Tn =
1

hσ(1)
[C0y(xn) + C1hy

′(xn) + C2h
2y ′′(xn) + · · · ], (3)

where

C0 =
k∑

j=0

αj ,

C1 =
k∑

j=1

jαj −
k∑

j=0

βj ,

etc.

Cq =
k∑

j=1

jq

q!
αj −

k∑
j=1

jq−1

(q − 1)!
βj , for q ≥ 2.



For consistency we need that Tn → 0 as h→ 0 and this requires
that C0 = 0 and C1 = 0; in terms of the characteristic polynomials
this consistency requirement can be restated in compact form as

ρ(1) = 0 and ρ′(1) = σ(1) 6= 0.

Observe that, according to this condition, if a linear multi-step
method is consistent then it has a simple root on the unit circle
at z = 1; thus the root condition is not violated by this zero.
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Definition
A k-step method is said to have order of consistency p (or order
of accuracy p) if p is the largest positive integer such that, for any
sufficiently smooth solution curve in R of the initial-value problem
y ′ = f (x , y), y(x0) = y0, there exist constants K and h0 such that

|Tn| ≤ Khp for 0 < h ≤ h0

for any (k + 1) points (xn, y(xn)), . . . , (xn+k , y(xn+k)) on the
solution curve.



Thus we deduce from (3) that the method is of order of
consistency p if, and only if,

C0 = C1 = · · · = Cp = 0 and Cp+1 6= 0.

In this case,

Tn =
Cp+1

σ(1)
hpy (p+1)(xn) +O(hp+1);

the number Cp+1 (6= 0) is called the error constant of the
method.
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Exercise
Construct an implicit linear two-step method of maximum order,
containing one free parameter.

Determine the order and the error constant of the method.



Solution: Taking α0 = a as parameter, the method has the form

yn+2 + α1yn+1 + ayn = h(β2fn+2 + β1fn+1 + β0fn),

with α2 = 1, α0 = a, β2 6= 0.

We have to determine α1, β2, β1, β0, so
we need four equations; these will be arrived at by requiring that

C0 = α0 + α1 + α2,

C1 = α1 + 2− (β0 + β1 + β2),

Cq =
1

q!
(α1 + 2qα2)− 1

(q − 1)!
(β1 + 2q−1β2), q = 2, 3,

appearing in (3) are all equal to zero, because we wish to maximise the
order of the method. Thus,

C0 = a + α1 + 1 = 0,

C1 = α1 + 2− (β0 + β1 + β2) = 0,

C2 =
1

2!
(α1 + 4)− (β1 + 2β2) = 0,

C3 =
1

3!
(α1 + 8)− 1

2!
(β1 + 4β2) = 0.
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Hence,

α1 = −1− a,

β0 = − 1

12
(1 + 5a), β1 =

2

3
(1− a), β2 =

1

12
(5 + a),

and the resulting method is

yn+2−(1+a)yn+1 +ayn =
1

12
h [(5 + a)fn+2 + 8(1− a)fn+1 − (1 + 5a)fn] .

(4)

Further,

C4 =
1

4!
(α1 + 16)− 1

3!
(β1 + 8β2) = − 1

4!
(1 + a),

C5 =
1

5!
(α1 + 32)− 1

4!
(β1 + 16β2) = − 1

3 · 5!
(17 + 13a).

If a 6= −1 then C4 6= 0, and the method (4) is third order consistent.
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If, on the other hand, a = −1, then C4 = 0 and C5 6= 0 and the method
(4) becomes the Simpson rule method: a fourth-order consistent
two-step method. The error constant is:

C4 = − 1

4!
(1 + a), a 6= −1,

C5 = − 4

3 · 5!
, a = −1.

�


