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Convergence

Linear k-step method:
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What matters most from the practical point of view is that the
numerical approximation y, at the mesh-point x, is close to the
value of the analytical solution y(x,), for n=0,..., N, and that
the global error e, = y(x,) — y» tends to 0 when h — 0.



Convergence

Linear k-step method:

k k
> aiynej=hY Bifarj,  n=01,...,N—k,
j=1 j=1

hi=(Xpm —x0)/N, N> 1, f:= f(xn, yn), ax #0, a3 + 32 # 0.

What matters most from the practical point of view is that the
numerical approximation y, at the mesh-point x, is close to the
value of the analytical solution y(x,), for n=0,..., N, and that
the global error e, = y(x,) — y» tends to 0 when h — 0.

In order to formalise the desired behaviour, we introduce the
following definition.



Definition

A linear multi-step method is said to be convergent if, for all
initial-value problems y’ = f(x,y), y(x0) = yo, subject to the
hypotheses of the Cauchy—Picard theorem, we have that

lim  yn = y(x) (1)

nh=x—xq

holds for all x € [xo, Xm] and for all solutions {y,}"_, generated
by the k-step method with consistent starting conditions, i.e.,
with starting conditions ys = ns(h), s =0,1,..., k — 1, for which
limpons(h) =y0, s=0,1,...,k—1.
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P> convergence.



We shall investigate the interplay between
» zero-stability,
» consistency, and

P> convergence.

The key result is Dahlquist’s Equivalence Theorem, which
states that for a consistent linear multi-step method zero-stability
is necessary and sufficient for convergence.
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Theorem
A necessary condition for the convergence of a linear multi-step
method is that it be zero-stable.
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PRrROOF:

Suppose that a linear multi-step method is convergent; we wish to
show that it is then zero-stable.

We consider the initial-value problem y’ =0, y(0) = 0, on the
interval [0, Xp1], X > 0, whose solution is, trivially, y(x) = 0.

Applying the method to this problem yields the difference equation

Uk Ynik + Qk—1Yntk—1 + -+ aoyn = 0. (2)
As the method is assumed to be convergent, for any x € [0, Xj]
we have
lim y, =0, (3)
h—0
nh=x

for all solutions of (2) s.t. ys = ns(h), s=0,...,k — 1, where

lim ns(h) =0, s=0,1,...,k—1. (4)
h—0
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(1) Let z= re'®, be a root of the first characteristic polynomial
p(z); r>0,0< ¢ <27 Itisthen easy to verify that the numbers

yn = hr" cos ng
define a solution to (2) satisfying (4). [Hint: Re(z"p(z)) = 0]
CASE 1.1  If ¢ # 0 and ¢ # m, then

}’3 — Yn+1Yn—1 _ p2 20
f —_— r .
sin© ¢

Since the left-hand side of this converges to 0 as h — 0, n — oo,
nh = x, the same must be true of the right-hand side; therefore,

) X\ 2
lim (—) " = 0.
n—o0 n

This implies that r < 1. Thus we have proved that |z| < 1.
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CASE 1.2 If, on the other hand, ¢ =0 or ¢ = m, then

‘yn’ = hr"’COS n(b‘ = hrn — %rn.

As y, — 0 when h — 0 and n — oo, the same must be true of the
right-hand side. Thus, again, necessarily r <1, i.e., |z| < 1.
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(2)  Next we prove that any root of the first characteristic
polynomial that lies on the unit circle must be simple.

Assume, for contradiction, that z = re/? is a multiple root of p(z),
with |z| =1 (and therefore r = 1) and 0 < ¢ < 27.

We shall prove below that this contradicts our assumption that the
method (2) is convergent. It is easy to check that the numbers

Yn = A2 nr" cos ng (5)
define a solution to (2). [Hint: Re(nz"p(z) 4+ z"1p/(z)) = 0.]
In addition, (4) holds because

ns(h)| = |ys| < AY%s < h/%(k—1), s=0,...k—1.
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CASE 2.1 If ¢ #0 and ¢ # , then

2
Zn - Zn+lzn—1 o r2n

=r" 6
sin? ¢ (6)
where z, = n_lh_1/2y,, = hl/zx_ly,,.

Since, by (3), limp—00 2, = 0, it follows that the left-hand side of
(6) converges to 0 as n — oo.

But then the same must be true of the right-hand side of (6);
however, the right-hand side of (6) cannot converge to 0 as

n— oo, since r = 1.

Thus we have reached a contradiction.



CASE 2.2 If, on the other hand, ¢ = 0 or ¢ = 7, it follows from
(5) with h = x/n that

Yol = X2V 1. (7)

Since, by assumption, |z| =1 (and therefore r = 1), we deduce
from (7) that lim,_o0 |yn| = 00, which again contradicts (3). <
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Theorem

A necessary condition for the convergence of a linear multi-step
method is that it be consistent.

Remark. In other words, we need to show that if a linear multi-step
method is convergent, then

k
G = Zaj =p(1) =0,
j=0

and

k k
Ci=) jaj—Y B=p(1)-o(l)=0.
j=1 j=0
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PROOF:
Let us suppose that a linear multi-step method is convergent; we
wish to show that it is then consistent.

Let us first show that Cy = 0.

We consider the initial-value problem y’ =0, y(0) =1, on the
interval [0, Xp1], X > 0, whose solution is, trivially, y(x) = 1.

Applying the method to this gives:

QpYnik T Qp_1Yntk—1+ -+ Qoyn = 0. (8)

We supply “exact” starting values for the numerical method; i.e.,
we choose ys =1, s =0,...,k — 1. As, by hypothesis, the method
is convergent, we deduce that

lim y, = 1. 9)

h—0
nh=x



Since in the present case y, is independent of the choice of h, (9)
is equivalent to saying that

lim y, =1. (10)
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Since in the present case y, is independent of the choice of h, (9)
is equivalent to saying that

nlrgoyn =1. (10)
Passing to the limit n — oo in (8), we deduce that

ak+ag_1+---+ag=0. (11)

By the definition of Cp, (11) is equivalent to Gy = 0.
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To show that C; = 0, we consider the initial-value problem y’' =1,
y(0) =0, on the interval [0, Xi], Xp > 0; hence, y(x) = x.

The method applied to this now becomes
Ytk +k—1Ynrk—1+ -+ aoyn = h(Bk+Bk—1+---+Bo), (12)
where Xpy —xo = Xpy—0=Nhand 1 <n< N — k.
For a convergent method every solution of (12) satisfying
}I7i_>m0775(h):0, s=0,1,...,k—1, (13)
where ys = ns(h), s =0,1,..., k — 1, must also satisfy

Li_rg Yn = X. (14)
nh=x



By the previous theorem zero-stability is necessary for convergence;
so the first characteristic polynomial p(z) of the method does not
have a multiple root on the unit circle |z| = 1; therefore

p’(l):kak+~‘+2a2+a15£0.



By the previous theorem zero-stability is necessary for convergence;
so the first characteristic polynomial p(z) of the method does not
have a multiple root on the unit circle |z| = 1; therefore
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Let the sequence {y,}N_; be defined by y, = Knh, where

_ Bt + Pt B o(l)
kag+---+2m+ar  p'(1)

(13)
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By the previous theorem zero-stability is necessary for convergence;
so the first characteristic polynomial p(z) of the method does not
have a multiple root on the unit circle |z| = 1; therefore

,0/(1) = kay+ -+ 202+ ag #0.
Let the sequence {y,}N_; be defined by y, = Knh, where

Bk+--+p1+B  o(l)

= = ; 15
ko + -+ + 200 + o ,0’(1) ( )

this sequence clearly satisfies (13) and is the solution of (12).

Furthermore, (14) implies that

x=y(x) = Lm Yn = Lm Knh = Kx,
nh=x nh=x

and therefore K = 1. Hence, from (15),

G = (kax+ - +2m+o1) = (Be+-+P1+P) =0 o



Sufficient conditions for convergence

Theorem

For a linear multi-step method that is consistent with the ordinary
differential equation y' = f(x,y), where f is assumed to satisfy a
Lipschitz condition, and starting with consistent starting
conditions, zero-stability is sufficient for convergence.

[Proof (optional): See the Lecture Notes.]
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By combining the last three theorems we arrive at the following
important result.

Germund Dahlquist (16 January 1925 — 8 February 2005)

Theorem (Dahlquist’s Theorem)

For a linear multi-step method that is consistent with the ordinary
differential equation y' = f(x,y) where f satisfies the Lipschitz
condition, and starting with consistent initial data, zero-stability is
necessary and sufficient for convergence. Moreover if the solution
y(x) has continuous derivative of order (p + 1) and consistency
error O(hP), then the global error e, = y(xn) — yn is also O(hP).



Remark

N)



Remark

By Dahlquist’s theorem, if a linear multi-step method is not
zero-stable then its global error cannot be made arbitrarily small by
taking the mesh size h sufficiently small for any sufficiently

accurate initial data.



Remark

By Dahlquist’s theorem, if a linear multi-step method is not
zero-stable then its global error cannot be made arbitrarily small by
taking the mesh size h sufficiently small for any sufficiently
accurate initial data.

In fact, if the root condition is violated then there exists a solution
to the linear multi-step method which will grow by an arbitrarily
large factor in a fixed interval of x, however accurate the starting
conditions are. This highlights the importance of zero-stability in
practical computations.



