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Convergence

Linear k-step method:

k∑
j=1

αjyn+j = h
k∑

j=1

βj fn+j , n = 0, 1, . . . ,N − k,

h := (XM − x0)/N, N � 1, fn := f (xn, yn), αk 6= 0, α2
0 + β20 6= 0.

What matters most from the practical point of view is that the
numerical approximation yn at the mesh-point xn is close to the
value of the analytical solution y(xn), for n = 0, . . . ,N, and that
the global error en = y(xn)− yn tends to 0 when h→ 0.

In order to formalise the desired behaviour, we introduce the
following definition.
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Definition
A linear multi-step method is said to be convergent if, for all
initial-value problems y ′ = f (x , y), y(x0) = y0, subject to the
hypotheses of the Cauchy–Picard theorem, we have that

lim
h→0

nh=x−x0

yn = y(x) (1)

holds for all x ∈ [x0,XM ] and for all solutions {yn}Nn=0 generated
by the k-step method with consistent starting conditions, i.e.,
with starting conditions ys = ηs(h), s = 0, 1, . . . , k − 1, for which
limh→0 ηs(h) = y0, s = 0, 1, . . . , k − 1.



We shall investigate the interplay between

I zero-stability,

I consistency, and

I convergence.

The key result is Dahlquist’s Equivalence Theorem, which
states that for a consistent linear multi-step method zero-stability
is necessary and sufficient for convergence.
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Necessary conditions for convergence

We show that both zero-stability and consistency are necessary for
convergence.

Theorem
A necessary condition for the convergence of a linear multi-step
method is that it be zero-stable.
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Proof:
Suppose that a linear multi-step method is convergent; we wish to
show that it is then zero-stable.

We consider the initial-value problem y ′ = 0, y(0) = 0, on the
interval [0,XM ], XM > 0, whose solution is, trivially, y(x) ≡ 0.

Applying the method to this problem yields the difference equation

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = 0. (2)

As the method is assumed to be convergent, for any x ∈ [0,XM ]
we have

lim
h→0
nh=x

yn = 0, (3)

for all solutions of (2) s.t. ys = ηs(h), s = 0, . . . , k − 1, where

lim
h→0

ηs(h) = 0, s = 0, 1, . . . , k − 1. (4)
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(1) Let z = reiφ, be a root of the first characteristic polynomial
ρ(z); r ≥ 0, 0 ≤ φ < 2π.

It is then easy to verify that the numbers

yn = hrn cos nφ

define a solution to (2) satisfying (4). [Hint: Re
(
znρ(z)

)
= 0.]

CASE 1.1 If φ 6= 0 and φ 6= π, then

y2n − yn+1yn−1

sin2 φ
= h2r2n.

Since the left-hand side of this converges to 0 as h→ 0, n→∞,
nh = x , the same must be true of the right-hand side; therefore,

lim
n→∞

(x
n

)2
r2n = 0.

This implies that r ≤ 1. Thus we have proved that |z | ≤ 1.
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CASE 1.2 If, on the other hand, φ = 0 or φ = π, then

|yn| = hrn| cos nφ| = hrn =
x

n
rn.

As yn → 0 when h→ 0 and n→∞, the same must be true of the
right-hand side. Thus, again, necessarily r ≤ 1, i.e., |z | ≤ 1.
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(2) Next we prove that any root of the first characteristic
polynomial that lies on the unit circle must be simple.

Assume, for contradiction, that z = reiφ is a multiple root of ρ(z),
with |z | = 1 (and therefore r = 1) and 0 ≤ φ < 2π.

We shall prove below that this contradicts our assumption that the
method (2) is convergent. It is easy to check that the numbers

yn = h1/2nrn cos nφ (5)

define a solution to (2). [Hint: Re
(
nznρ(z) + zn+1ρ′(z)

)
= 0.]

In addition, (4) holds because

|ηs(h)| = |ys | ≤ h1/2s ≤ h1/2(k − 1), s = 0, . . . k − 1.
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Thus we have reached a contradiction.
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CASE 2.2 If, on the other hand, φ = 0 or φ = π, it follows from
(5) with h = x/n that

|yn| = x1/2n1/2rn. (7)

Since, by assumption, |z | = 1 (and therefore r = 1), we deduce
from (7) that limn→∞ |yn| =∞, which again contradicts (3). �



Theorem
A necessary condition for the convergence of a linear multi-step
method is that it be consistent.

Remark. In other words, we need to show that if a linear multi-step
method is convergent, then

C0 =
k∑

j=0

αj = ρ(1) = 0,

and

C1 =
k∑

j=1

jαj −
k∑

j=0

βj = ρ′(1)− σ(1) = 0.
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Proof:
Let us suppose that a linear multi-step method is convergent; we
wish to show that it is then consistent.

Let us first show that C0 = 0.

We consider the initial-value problem y ′ = 0, y(0) = 1, on the
interval [0,XM ], XM > 0, whose solution is, trivially, y(x) ≡ 1.

Applying the method to this gives:

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = 0. (8)

We supply “exact” starting values for the numerical method; i.e.,
we choose ys = 1, s = 0, . . . , k − 1. As, by hypothesis, the method
is convergent, we deduce that

lim
h→0
nh=x

yn = 1. (9)
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Since in the present case yn is independent of the choice of h, (9)
is equivalent to saying that

lim
n→∞

yn = 1. (10)

Passing to the limit n→∞ in (8), we deduce that

αk + αk−1 + · · ·+ α0 = 0. (11)

By the definition of C0, (11) is equivalent to C0 = 0.
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To show that C1 = 0, we consider the initial-value problem y ′ = 1,
y(0) = 0, on the interval [0,XM ], XM > 0; hence, y(x) = x .

The method applied to this now becomes

αkyn+k +αk−1yn+k−1+ · · ·+α0yn = h(βk +βk−1+ · · ·+β0), (12)

where XM − x0 = XM − 0 = Nh and 1 ≤ n ≤ N − k.

For a convergent method every solution of (12) satisfying

lim
h→0

ηs(h) = 0, s = 0, 1, . . . , k − 1, (13)

where ys = ηs(h), s = 0, 1, . . . , k − 1, must also satisfy

lim
h→0
nh=x

yn = x . (14)
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By the previous theorem zero-stability is necessary for convergence;
so the first characteristic polynomial ρ(z) of the method does not
have a multiple root on the unit circle |z | = 1; therefore

ρ′(1) = kαk + · · ·+ 2α2 + α1 6= 0.

Let the sequence {yn}Nn=0 be defined by yn = Knh, where

K =
βk + · · ·+ β1 + β0

kαk + · · ·+ 2α2 + α1
=
σ(1)

ρ′(1)
; (15)

this sequence clearly satisfies (13) and is the solution of (12).

Furthermore, (14) implies that

x = y(x) = lim
h→0
nh=x

yn = lim
h→0
nh=x

Knh = Kx ,

and therefore K = 1. Hence, from (15),

C1 = (kαk + · · ·+ 2α2 + α1)− (βk + · · ·+ β1 + β0) = 0. �
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Sufficient conditions for convergence

Theorem
For a linear multi-step method that is consistent with the ordinary
differential equation y ′ = f (x , y), where f is assumed to satisfy a
Lipschitz condition, and starting with consistent starting
conditions, zero-stability is sufficient for convergence.

[Proof (optional): See the Lecture Notes.]



By combining the last three theorems we arrive at the following
important result.

Germund Dahlquist (16 January 1925 – 8 February 2005)

Theorem (Dahlquist’s Theorem)

For a linear multi-step method that is consistent with the ordinary
differential equation y ′ = f (x , y) where f satisfies the Lipschitz
condition, and starting with consistent initial data, zero-stability is
necessary and sufficient for convergence. Moreover if the solution
y(x) has continuous derivative of order (p + 1) and consistency
error O(hp), then the global error en = y(xn)− yn is also O(hp).
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Remark

By Dahlquist’s theorem, if a linear multi-step method is not
zero-stable then its global error cannot be made arbitrarily small by
taking the mesh size h sufficiently small for any sufficiently
accurate initial data.

In fact, if the root condition is violated then there exists a solution
to the linear multi-step method which will grow by an arbitrarily
large factor in a fixed interval of x , however accurate the starting
conditions are. This highlights the importance of zero-stability in
practical computations.
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