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Absolute stability of linear multistep methods

We discussed the stability/accuracy properties of linear multistep
methods in the limit of h→ 0, n→∞, nh fixed.

It is of practical significance to understand the performance of
methods for h > 0 fixed and n→∞.

We must ensure that, when applied to an initial-value problem
whose solution decays to zero as x →∞, the linear multistep
method has a similar behaviour for h > 0 fixed, xn = x0 + nh→∞.
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Our model problem with exponentially decaying solution is

y ′ = λy , x > 0, y(0) = y0 (6= 0), (1)

where λ ∈ C, Reλ < 0.

Indeed,

y(x) = y0e
ıx Imλex Reλ,

and therefore,

|y(x)| ≤ |y0| exp(−x |Reλ|), x ≥ 0,

yielding limx→∞ y(x) = 0.

Remark
We shall assume for simplicity that λ ∈ R<0, but everything
extends straightforwardly to the case of λ ∈ C with Reλ < 0.
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By applying a linear k-step method to the model problem (1) with
λ ∈ R<0, we have:

k∑
j=0

(αj − hλβj) yn+j = 0.

The general solution yn to this homogeneous difference equation
can be expressed as a linear combination of powers of roots of the
associated characteristic polynomial

π(z ; h̄) = ρ(z)− h̄σ(z), (h̄ = hλ). (2)

Thus it follows that yn will converge to zero for h > 0 fixed and
n→∞ if, and only if, all roots of π(z ; h̄) have modulus < 1.

The kth degree polynomial π(z ; h̄) defined by (2) is called the
stability polynomial of the linear k-step method with first and
second characteristic polynomials ρ(z) and σ(z), respectively.
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Definition
A linear multistep method is called absolutely stable for a given h̄
if, and only if, for that h̄ all the roots rs = rs(h̄) of the stability
polynomial π(z , h̄) defined by (2) satisfy |rs | < 1, s = 1, . . . , k .
Otherwise, the method is said to be absolutely unstable.

An interval (α, β) of the real line is called the interval of absolute
stability if the method is absolutely stable for all h̄ ∈ (α, β). If the
method is absolutely unstable for all h̄, it is said to have no
interval of absolute stability.
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Since for λ > 0 the solution of (1) exhibits exponential growth, it
is reasonable to expect that a consistent and zero-stable (and,
therefore, convergent) linear multistep method will have a similar
behaviour for h > 0 sufficiently small, and will be therefore
absolutely unstable for small h̄ = λh. This is indeed the case.

Theorem
Every consistent and zero-stable linear multistep method is
absolutely unstable for small positive h̄.
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Proof:
Because the method is consistent, there exists an integer p ≥ 1
such that C0 = C1 = · · · = Cp = 0 and Cp+1 6= 0.

Consider

π(eh̄; h̄) = ρ(eh̄)− h̄σ(eh̄) =
k∑

j=0
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= C0 +
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h̄qCq =
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q=p+1

Cq h̄
q = O(h̄p+1). (3)
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On the other hand, the polynomial π(z ; h̄) can be written in the
factorised form

π(z , h̄) = (αk − h̄βk)(z − r1) · · · (z − rk)

where rs = rs(h̄), s = 1, . . . , k , are the roots of π(·; h̄).

Hence,

π(eh̄; h̄) = (αk − h̄βk)(eh̄ − r1(h̄)) · · · (eh̄ − rk(h̄)). (4)

As h̄→ 0, we have αk − h̄βk → αk 6= 0, and thanks to the
continuous dependence of the roots of a polynomial on the
coefficients of the polynomial,

rs(h̄)→ ζs , s = 1, . . . , k ,

where ζs , s = 1, . . . , k , are the roots of ρ(z).
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Since, by assumption, the method is consistent, 1 is a root of ρ(z);
furthermore, by zero-stability 1 is a simple root of ρ(z).

Suppose for definiteness that it is ζ1 that is equal to 1. Then,
ζs 6= 1 for s 6= 1 and therefore

lim
h̄→0

(eh̄ − rs(h̄)) = (1− ζs) 6= 0, s 6= 1.

Thus, by (4), the only factor of π(eh̄; h̄) that converges to 0 as

h̄→ 0 is eh̄ − r1(h̄) (the other factors tend to nonzero constants).

Now, by (3), π(eh̄; h̄) = O(h̄p+1), so it follows that

eh̄ − r1(h̄) = O(h̄p+1).

Thus we have shown that

r1(h̄) = eh̄ +O(h̄p+1).

Hence

r1(h̄) > 1 +
1

2
h̄ for small positive h̄. �
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h̄→ 0 is eh̄ − r1(h̄) (the other factors tend to nonzero constants).

Now, by (3), π(eh̄; h̄) = O(h̄p+1), so it follows that

eh̄ − r1(h̄) = O(h̄p+1).

Thus we have shown that

r1(h̄) = eh̄ +O(h̄p+1).

Hence

r1(h̄) > 1 +
1

2
h̄ for small positive h̄. �
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How to locate the interval of absolute stability?

We describe two methods for finding the endpoints of the interval
of absolute stability.

Issai Schur
(10 January 1875, Mogilev, Belarus – 10 January 1941, Tel Aviv, Israel)

The Schur criterion. A polynomial

φ(r) = ck r
k + · · ·+ c1r + c0, ck 6= 0, c0 6= 0,

with complex coefficients is said to be a Schur polynomial if each
of its roots, rs , satisfies |rs | < 1, s = 1, . . . , k.

Let
φ̂(r) := c̄0r

k + c̄1r
k−1 + · · ·+ c̄k−1r + c̄k ,

where c̄j denotes the complex conjugate of cj , j = 1, . . . , k .

Further, let us define

φ1(r) =
1

r

[
φ̂(0)φ(r)− φ(0)φ̂(r)

]
.

Clearly φ1 has degree ≤ k − 1.
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The following key result is stated without proof.

Theorem (Schur’s criterion)

The polynomial φ is a Schur polynomial if, and only if:

I |φ̂(0)| > |φ(0)|, and

I φ1 is a Schur polynomial.



Exercise
Use Schur’s criterion to determine the interval of absolute stability
of the linear multistep method

yn+2 − yn =
h

2
(fn+1 + 3fn) .



Solution: The first and second characteristic polynomials of the
method are

ρ(z) = z2 − 1, σ(z) =
1

2
(z + 3).

Therefore the stability polynomial is

π(r ; h̄) = ρ(r)− h̄σ(r) = r2 − 1

2
h̄r −

(
1 +

3

2
h̄

)
.

Now,

π̂(r ; h̄) = −
(

1 +
3

2
h̄

)
r2 − 1

2
h̄r + 1.

Clearly, |π̂(0; h̄)| > |π(0, h̄)| if, and only if, h̄ ∈ (− 4
3 , 0). As

π1(r , ĥ) = −1

2
h̄(2 +

3

2
h̄)(3r + 1)

has the unique root − 1
3 and is, therefore, a Schur polynomial, we deduce

from Schur’s criterion that π(r ; h̄) is a Schur polynomial if, and only if,
h̄ ∈ (− 4

3 , 0). Therefore the interval of absolute stability is (− 4
3 , 0). �
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π1(r , ĥ) = −1

2
h̄(2 +

3

2
h̄)(3r + 1)

has the unique root − 1
3 and is, therefore, a Schur polynomial, we deduce

from Schur’s criterion that π(r ; h̄) is a Schur polynomial if, and only if,
h̄ ∈ (− 4

3 , 0). Therefore the interval of absolute stability is (− 4
3 , 0). �



Edward John Routh Adolf Hurwitz
20 January 1831, Quebec – 7 June 1907 Cambridge 26 March 1859 Hildesheim – 18 November 1919 Zürich

The Routh–Hurwitz criterion. Consider the mapping

z =
r − 1

r + 1

of the open unit disc |r | < 1 of the complex r -plane to the left
open complex half-plane Re z < 0 of the complex z-plane.

The inverse of this mapping is

r =
1 + z

1− z
.

Under this transformation π(r , h̄) = ρ(r)− h̄σ(r) becomes

ρ

(
1 + z

1− z

)
− h̄σ

(
1 + z

1− z

)
.

Multiplying this by (1− z)k we obtain a polynomial of the form

a0z
k + a1z

k−1 + · · ·+ ak . (5)

The roots of π(r , h̄) lie inside the open unit disk |r | < 1 if, and only
if, the roots of (5) lie in the left open complex half-plane Re z < 0.
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Theorem (Routh–Hurwitz criterion)

The roots of (5) lie in the left open complex half-plane if, and only
if, all the leading principal minors of the k × k matrix

Q =



a1 a3 a5 · · · a2k−1

a0 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 a0 a2 · · · a2k−4

· · · · · · · · · · · · · · ·
0 0 0 · · · ak


are positive and a0 > 0; we assume that aj = 0 if j > k. E.g.:

a) for k = 2: a0 > 0, a1 > 0, a2 > 0;

b) for k = 3: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a1a2 − a3a0 > 0;

c) for k = 4: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a4 > 0,
a1a2a3 − a0a

2
3 − a4a

2
1 > 0;

represent the necessary and sufficient conditions for ensuring that
all roots of (5) lie in the left open complex half-plane.



Exercise
Use the Routh–Hurwitz criterion to find the interval of absolute
stability of the linear multistep method from the previous exercise.



Solution: By applying the substitution

r =
1 + z

1− z

in the stability polynomial

π(r , h̄) = r2 − 1

2
h̄r −

(
1 +

3

2
h̄

)
and multiplying the resulting function by (1− z)2, we get

(1− z)2

[(
1 + z

1− z

)2

− 1

2
h̄

(
1 + z

1− z

)
−
(

1 +
3

2
h̄

)]
= a0z

2 + a1z + a2

with
a0 = −h̄, a1 = 4 + 3h̄, a2 = −2h̄.

Applying part a) of the theorem (Routh-Hurwitz criterion) we deduce
that the method is zero-stable if, and only if, h̄ ∈ (− 4

3 , 0); hence the
interval of absolute stability is (− 4

3 , 0). �
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