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Consider an initial-value problem for a system of m ODEs:

y′ = f(x , y), y(a) = y0, (1)

where y = (y1, . . . , ym)T.

A linear k-step method for the numerical solution of (1) is

k∑
j=0

αjyn+j = h
k∑

j=0

βj fn+j , where fn+j = f(xn+j , yn+j). (2)

Suppose, for simplicity, that f(x , y) = Ay + b where A ∈ Rm×m is
a constant matrix and b ∈ Rm is a constant (column) vector.

Then (2) becomes

k∑
j=0

(αj I − hβjA)yn+j = hσ(1)b, (3)

where σ(1) =
∑k

j=0 βj (6= 0) and I is the m ×m identity matrix.
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Let us suppose that the eigenvalues λi , i = 1, . . . ,m, of the matrix
A are distinct. Then, there exists a nonsingular matrix H such that

HAH−1 = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λm

 ; i.e., A = H−1ΛH. (4)

Let z = Hy and c = hσ(1)Hb. Then (3) becomes

k∑
j=0

(αj I − hβjΛ)zn+j = c, (5)

or, in component-wise form,

k∑
j=0

(αj − hβjλi )zn+j ,i = ci ,

where zn+j ,i and ci , i = 1, . . . ,m, are the components of zn+j and
c respectively. Each of these m equations is completely decoupled
from the other m − 1 equations.
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Thus we are now in the setting of the previous lecture where we
considered linear multistep methods for a single ODE.

However, there is a new feature here: because the numbers λi ,
i = 1, . . . ,m, are eigenvalues of the matrix A, they need not be
real numbers. As a consequence the parameter h̄ := hλ, where λ is
any of the m eigenvalues, can be a complex number.

This leads to the following modification of our earlier definition of
absolute stability.
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Definition
A linear k-step method is said to be absolutely stable in an open
set RA of the complex plane if, for all h̄ ∈ RA, all roots rs ,
s = 1, . . . , k , of the stability polynomial π(r , h̄) associated with the
method satisfy |rs | < 1. The set RA is called the region of
absolute stability of the method.

Clearly, the interval of absolute stability of a linear multistep
method is a subset of its region of absolute stability.
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Exercise

a) Find the region of absolute stability of Euler’s explicit method
when applied to y ′ = λy , y(x0) = y0, λ ∈ C, Re λ < 0.

b) Suppose that Euler’s explicit method is applied to the
second-order differential equation

y ′′ + (1− λ)y ′ − λy = 0, y(0) = 1, y ′(0) = −λ− 2,

rewritten as a first-order system in the vector (u, v)T, with
u = y and v = y ′, λ ∈ C, Re λ < 0, and let |λ| � 1.

What choice of the step size h ∈ (0, 1) will guarantee absolute
stability in the sense of the last definition?
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Solution:

a) For Euler’s explicit method ρ(z) = z − 1 and σ(z) = 1, so that

π(z ; h̄) = ρ(z)− h̄σ(z) = (z − 1)− h̄ = z − (1 + h̄), h̄ := hλ.

This has the root r = 1 + h̄. Hence the region of absolute stability is

RA = {h̄ ∈ C : |1 + h̄| < 1},

which is an open unit disc centred at −1.
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b) Now writing u = y and v = y ′ and y = (u, v)T, the initial-value
problem for the given second-order differential equation can be recast as

y′ = Ay, y(0) = y0,

where

A =

(
0 1
λ λ− 1

)
and y0 =

(
1

−λ− 2

)
.

The eigenvalues of A are the roots of the characteristic polynomial of A,

det(A− zI ) = z2 + (1− λ)z − λ.

whose roots are −1 and λ, and we deduce that the method is absolutely
stable provided that |1 + hλ| < 1. It is an easy matter to show that

u(x) = 2e−x − eλx , v(x) = −2e−x + λeλx .

The graphs of u and v are shown on the next slide for λ = −45. �
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v varies rapidly near x = 0 while u is slowly varying for x > 0 and v is
slowly varying for x > 1/45. Nevertheless, we are forced to use a step
size of h < 2/45 in order to ensure that the method is absolutely stable.



To ensure the absolute stability, the mesh size h may have to be
chosen exceedingly small, h < −2Re λ/|λ|2, smaller than an
accurate approximation of the solution for x � 1/|λ| would
necessitate. Systems of differential equations which exhibit this
behaviour are generally referred to as stiff systems.

Stiffness of an ODE is a concept that lacks a rigorous definition.1

A historic and pragmatic ‘definition’ by Curtis and Hirschfelder2

reads: stiff equations are equations where the implicit Euler
method works significantly better than the explicit Euler method.

1See G. Söderlind, L. Jay, and M. Calvo, Stiffness 1952–2012: Sixty years in
search of a definition. BIT Numerical Mathematics, June 2015 55(2), 531–558.

2Integration of stiff equations. Proceedings of the National Academy of
Sciences, March 1, 1952 38 (3) 235–243.
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Stability of numerical methods for stiff systems

To motivate the various definitions of stability that follow, we
begin with a simple example.

Consider Euler’s implicit method for

y ′ = λy , y(0) = y0, where λ ∈ C.

The stability polynomial of the method is π(z , h̄) = ρ(z)− h̄σ(z)
where h̄ := hλ, ρ(z) = z − 1 and σ(z) = z .

Since the only root of the stability polynomial is z = 1/(1− h̄), we
deduce that the method has the region of absolute stability

RA = {h̄ ∈ C : |1− h̄| > 1}.

RA includes the whole of the left open complex half-plane.
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The shaded regions are the regions of absolute stability of the
explicit (forward) Euler and the implicit (backward) Euler method

in the complex plane.



Definition (Dahlquist (1963))

A linear multistep method is said to be A-stable if its region of
absolute stability, RA, contains the whole of the left open complex
half-plane Re(hλ) < 0.

Thus, for example, the implicit Euler method is A-stable.

The left complex half-plane Re(hλ) < 0.

As the next theorem shows, this definition is far too restrictive.
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Theorem (Dahlquist (1963))
(i) No explicit linear multistep method is A-stable.

(ii) The order of an A-stable implicit linear multistep method
cannot exceed 2.

(iii) The second-order A-stable linear multistep method with
smallest error constant is the trapezium rule.

This motivates the following, less restrictive notion of stability.
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Definition (Widlund (1967))

A linear multistep method is said to be A(α)-stable, α ∈ (0, π/2),
if its region of absolute stability RA contains the infinite open
wedge in the complex plane

Wα = {h̄ ∈ C |π − α < arg(h̄) < π + α}.

A linear multistep method is said to be A(0)-stable if it is
A(α)-stable for some α ∈ (0, π/2).

α
α

A linear multistep method is A0 stable if RA includes the negative
real axis in the complex plane.
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α

Remark
If Reλ < 0 for a given λ then h̄ = hλ either lies inside the wedge
Wα or outside Wα for all positive h.

Consequently, if all eigenvalues λ of the matrix A happen to lie in
some wedge Wα then an A(α)-stable method can be used for the
numerical solution of the initial-value problem without any
restrictions on the step size h.

In particular, if all eigenvalues of A are real and negative, then an
A(0) stable method can be used.
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Theorem

(i) No explicit linear multistep method is A(0)-stable.

(ii) The only A(0)-stable linear k-step method whose order
exceeds k is the trapezium rule.

(iii) For each α ∈ [0, π/2) there exist A(α)-stable linear k-step
methods of order p for which k = p = 3 and k = p = 4.



A different way of loosening the concept of A-stability was
proposed by Gear (1969).

The motivation behind it is the fact that for a typical stiff problem
the eigenvalues of the matrix A which produce the fast transients
all lie to the left of a line Re h̄ = −a, a > 0, in the complex plane,
while those that are responsible for the slow transients are
clustered around zero.

Definition (Gear (1969))

A linear multistep method is said to be stiffly stable if there exist
positive real numbers a and c such that RA ⊃ R1 ∪R2 where

R1 = {h̄ ∈ C : Re h̄ < −a},
R2 = {h̄ ∈ C : −a ≤ Re h̄ < 0, −c ≤ Im h̄ ≤ c}.
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while those that are responsible for the slow transients are
clustered around zero.

Definition (Gear (1969))

A linear multistep method is said to be stiffly stable if there exist
positive real numbers a and c such that RA ⊃ R1 ∪R2 where

R1 = {h̄ ∈ C : Re h̄ < −a},
R2 = {h̄ ∈ C : −a ≤ Re h̄ < 0, −c ≤ Im h̄ ≤ c}.



It is clear that stiff stability implies A(α)-stability with

α = arctan(c/a).

More generally, we have the following chain of implications:

A-stability⇒ stiff-stability⇒ A(α)-stability⇒ A(0)-stability⇒ A0-stability.


