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Consider an initial-value problem for a system of m ODEs:

y/ = f(va)’ y(a) = Yo, (1)

where y = (y1,...,ym)’.
A linear k-step method for the numerical solution of (1) is

k k
Zann—i—j = hZ/ijn—i-ja where f,; = f(Xn+j7Yn+j)- (2)

Suppose, for simplicity, that f(x,y) = Ay + b where A € R™*™ is
a constant matrix and b € R is a constant (column) vector.

Then (2) becomes

p
> (el = hBjA)ynyj = ho(1)b, (3)

Jj=0

where o(1) = ZJ o Bj (% 0) and I is the m x m identity matrix.



Let us suppose that the eigenvalues A\;, i = 1,..., m, of the matrix

A are distinct. Then, there exists a nonsingular matrix H such that
M O -0

HAH ™! = A= 0 Az - 0 . ie, A= HIAH. (4)

0 0 - Am



Let us suppose that the eigenvalues A\;, i = 1,..., m, of the matrix
A are distinct. Then, there exists a nonsingular matrix H such that

A\ 0o --- 0
HAH Y = A = 0 Az - 0 . ie, A= HIAH. (4)
0 0 )\m

Let z= Hy and c = ho(1)Hb.



Let us suppose that the eigenvalues A\;, i = 1,..., m, of the matrix
A are distinct. Then, there exists a nonsingular matrix H such that

A O -0
HAH ™! = A= 0 Az - 0 . ie, A= HIAH. (4)
0 0 - Am
Let z= Hy and ¢ = ho(1)Hb. Then (3) becomes
k
> (el = hBiN)znyj =, (5)
j=0

or, in component-wise form,
k

> (o = hBiA)zasji = ¢i,
Jj=0
where z,;;and ¢, i =1,..., m, are the components of z,,; and

C respectively.



Let us suppose that the eigenvalues A\;, i = 1,..., m, of the matrix
A are distinct. Then, there exists a nonsingular matrix H such that

A\ 0o --- 0
HAH Y = A = 0 Az - 0 . ie, A= HIAH. (4)
0 0 )\m

Let z=Hy and c = ha(l)Hb. Then (3) becomes

Z(aj — hBiN)zp4j = c, (5)
or, in component—W|se form,

k

Z(aj — hBjAi)zntji = ciy

j=0
where z,;;and ¢, i =1,..., m, are the components of z,,; and

c respectively. Each of these m equations is completely decoupled
from the other m — 1 equations.
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Thus we are now in the setting of the previous lecture where we
considered linear multistep methods for a single ODE.

However, there is a new feature here: because the numbers A;,
i=1,...,m, are eigenvalues of the matrix A, they need not be
real numbers. As a consequence the parameter h := h\, where \ is
any of the m eigenvalues, can be a complex number.

This leads to the following modification of our earlier definition of
absolute stability.



Definition

A linear k-step method is said to be absolutely stable in an open
set R4 of the complex plane if, for all h € R4, all roots rs,
s=1,...,k, of the stability polynomial 7(r, h) associated with the
method satisfy |rs| < 1. The set R, is called the region of
absolute stability of the method.



Definition

A linear k-step method is said to be absolutely stable in an open
set R4 of the complex plane if, for all h € R4, all roots rs,
s=1,...,k, of the stability polynomial 7(r, h) associated with the
method satisfy |rs| < 1. The set R, is called the region of
absolute stability of the method.

Clearly, the interval of absolute stability of a linear multistep
method is a subset of its region of absolute stability.
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Find the region of absolute stability of Euler’s explicit method
when applied to y' = Ay, y(x0) = yo, A € C, Re A < 0.

Suppose that Euler’s explicit method is applied to the
second-order differential equation

Y+ (@ =A)y =Ay=0, y0)=1, y(0)=-1-2,

rewritten as a first-order system in the vector (u,v)T, with
u=yandv=y,AeC,Re X\ <0, and let |\| > 1.

What choice of the step size h € (0,1) will guarantee absolute
stability in the sense of the last definition?
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SOLUTION:

a) For Euler's explicit method p(z) = z— 1 and o(z) = 1, so that
m(z;h)=p(z) —ho(z) =(z—1)—h=z—(1+h), h:=h\
This has the root r = 1+ h. Hence the region of absolute stability is
Ra={heC:|1+h <1},

which is an open unit disc centred at —1.
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b) Now writing u =y and v = y" and y = (u, v)T, the initial-value
problem for the given second-order differential equation can be recast as

y =Ay,  y(0)=yo,

0 1 1
A()\ /\_1> and y0<_/\_2>.

The eigenvalues of A are the roots of the characteristic polynomial of A,

where

det(A—zl) = 22+ (1=XNz—-A\

whose roots are —1 and A, and we deduce that the method is absolutely
stable provided that |1 4+ hA| < 1. It is an easy matter to show that

u(x) = 27X — ™, v(x) = —2e7% 4+ e,

The graphs of u and v are shown on the next slide for A = —45. ¢
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v varies rapidly near x = 0 while v is slowly varying for x > 0 and v is
slowly varying for x > 1/45. Nevertheless, we are forced to use a step
size of h < 2/45 in order to ensure that the method is absolutely stable.



To ensure the absolute stability, the mesh size h may have to be
chosen exceedingly small, h < —2Re \/|A|?, smaller than an
accurate approximation of the solution for x > 1/|\| would
necessitate. Systems of differential equations which exhibit this
behaviour are generally referred to as stiff systems.

!See G. Séderlind, L. Jay, and M. Calvo, Stiffness 1952-2012: Sixty years in
search of a definition. BIT Numerical Mathematics, June 2015 55(2), 531-558.

2 Integration of stiff equations. Proceedings of the National Academy of
Sciences, March 1, 1952 38 (3) 235-243.



To ensure the absolute stability, the mesh size h may have to be
chosen exceedingly small, h < —2Re \/|A|?, smaller than an
accurate approximation of the solution for x > 1/|\| would
necessitate. Systems of differential equations which exhibit this
behaviour are generally referred to as stiff systems.

Stiffness of an ODE is a concept that lacks a rigorous definition.!

!See G. Séderlind, L. Jay, and M. Calvo, Stiffness 1952-2012: Sixty years in
search of a definition. BIT Numerical Mathematics, June 2015 55(2), 531-558.
2 Integration of stiff equations. Proceedings of the National Academy of

Sciences, March 1, 1952 38 (3) 235-243.



To ensure the absolute stability, the mesh size h may have to be
chosen exceedingly small, h < —2Re \/|A|?, smaller than an
accurate approximation of the solution for x > 1/|\| would
necessitate. Systems of differential equations which exhibit this
behaviour are generally referred to as stiff systems.

Stiffness of an ODE is a concept that lacks a rigorous definition.!
A historic and pragmatic ‘definition’ by Curtis and Hirschfelder?

reads: stiff equations are equations where the implicit Euler
method works significantly better than the explicit Euler method.

!See G. Séderlind, L. Jay, and M. Calvo, Stiffness 1952-2012: Sixty years in
search of a definition. BIT Numerical Mathematics, June 2015 55(2), 531-558.
2 Integration of stiff equations. Proceedings of the National Academy of

Sciences, March 1, 1952 38 (3) 235-243.
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Stability of numerical methods for stiff systems

To motivate the various definitions of stability that follow, we
begin with a simple example.

Consider Euler’s implicit method for

y/ = )\y7 y(O) = Yo, where )\ S C
The stability polynomial of the method is 7(z, h) = p(z) — ho(z)
where h:= h\, p(z) =z —1 and o(z) = z.

Since the only root of the stability polynomial is z = 1/(1 — h), we
deduce that the method has the region of absolute stability

Ra={hecC:|1-h >1}.

R 4 includes the whole of the left open complex half-plane.
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The shaded regions are the regions of absolute stability of the
explicit (forward) Euler and the implicit (backward) Euler method

in the complex plane.
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A linear multistep method is said to be A-stable if its region of
absolute stability, R 4, contains the whole of the left open complex
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Thus, for example, the implicit Euler method is A-stable.

The left complex half-plane Re(h\) < 0.

As the next theorem shows, this definition is far too restrictive.



Theorem (Dahlquist (1963))
(i) No explicit linear multistep method is A-stable.

(ii) The order of an A-stable implicit linear multistep method
cannot exceed 2.

(iii) The second-order A-stable linear multistep method with
smallest error constant is the trapezium rule.



Theorem (Dahlquist (1963))
(i) No explicit linear multistep method is A-stable.

(ii) The order of an A-stable implicit linear multistep method
cannot exceed 2.

(iii) The second-order A-stable linear multistep method with
smallest error constant is the trapezium rule.

This motivates the following, less restrictive notion of stability.
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Definition (Widlund (1967))

A linear multistep method is said to be A(«a)-stable, o € (0,7/2),
if its region of absolute stability R 4 contains the infinite open
wedge in the complex plane

W, =1{heC|r—a<arg(h) <n+a}.

A linear multistep method is said to be A(0)-stable if it is
A(«)-stable for some a € (0,7/2).

A linear multistep method is Ag stable if R4 includes the negative
real axis in the complex plane.



Remark B
If Re A < 0 for a given \ then h = h\ either lies inside the wedge
W,, or outside W, for all positive h.



Remark _
If Re A < 0 for a given \ then h = h\ either lies inside the wedge
W,, or outside W, for all positive h.

Consequently, if all eigenvalues A of the matrix A happen to lie in
some wedge W, then an A(«)-stable method can be used for the
numerical solution of the initial-value problem without any
restrictions on the step size h.



Remark _
If Re A < 0 for a given \ then h = h\ either lies inside the wedge
W,, or outside W, for all positive h.

Consequently, if all eigenvalues A of the matrix A happen to lie in
some wedge W, then an A(«)-stable method can be used for the
numerical solution of the initial-value problem without any
restrictions on the step size h.

In particular, if all eigenvalues of A are real and negative, then an
A(0) stable method can be used.



Theorem
(i) No explicit linear multistep method is A(0)-stable.

(i) The only A(0)-stable linear k-step method whose order
exceeds k is the trapezium rule.

(iii) For each v € [0,7/2) there exist A(«)-stable linear k-step
methods of order p for which k = p=3 and k = p = 4.
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A different way of loosening the concept of A-stability was
proposed by Gear (1969).

The motivation behind it is the fact that for a typical stiff problem
the eigenvalues of the matrix A which produce the fast transients
all lie to the left of a line Reh = —a, a > 0, in the complex plane,
while those that are responsible for the slow transients are
clustered around zero.

Definition (Gear (1969))

A linear multistep method is said to be stiffly stable if there exist
positive real numbers a and ¢ such that R4 D R1 U R, where

R1=1{heC:Reh< —a},
Roy={heC:-a<Reh<0, —c<Imh<c}.



It is clear that stiff stability implies A(«a)-stability with
a = arctan(c/a).
More generally, we have the following chain of implications:

A-stability = stiff-stability = A(«)-stability = A(0)-stability = Ap-stability.



