
Numerical Solution of Differential Equations I

Endre Süli

Mathematical Institute
University of Oxford

2020

Lecture 10



Motivation
Recall the system of differential equations from Lecture 9:

0

10

20

30

40

0.2 0.4 0.6 0.8 1
x

v varies rapidly near x = 0 while u is slowly varying for x > 0 and v is
slowly varying for x > 1/45. Nevertheless, we are forced to use a step
size of h < 2/45 in order to ensure that the method is absolutely stable.



Another motivating example: Van der Pol oscillator

du

dx
= v , u(0) = 2,

dv

dx
= µ(1− u2)v − u, v(0) = 0.

Numerical solutions produced by Matlab’s ode45 solver, for
µ = 500 and µ = 1000.



Adaptivity for stiff problems

y′ = f(x , y), y(x0) = y0, (1)

for all x ∈ [x0,XM ], and make sure that this approximation is
accurate up to a certain (absolute/relative) precision.

In addition, we would like to achieve such a precision in the
fastest/cheapest way possible. How should this be done?

We shall describe two attempts, the first attempt being
conceptually simpler, while the second attempt being the one
preferred in practice for reasons which we shall explain.



Adaptivity for stiff problems

y′ = f(x , y), y(x0) = y0, (1)

for all x ∈ [x0,XM ], and make sure that this approximation is
accurate up to a certain (absolute/relative) precision.

In addition, we would like to achieve such a precision in the
fastest/cheapest way possible. How should this be done?

We shall describe two attempts, the first attempt being
conceptually simpler, while the second attempt being the one
preferred in practice for reasons which we shall explain.



Adaptivity for stiff problems

y′ = f(x , y), y(x0) = y0, (1)

for all x ∈ [x0,XM ], and make sure that this approximation is
accurate up to a certain (absolute/relative) precision.

In addition, we would like to achieve such a precision in the
fastest/cheapest way possible. How should this be done?

We shall describe two attempts, the first attempt being
conceptually simpler, while the second attempt being the one
preferred in practice for reasons which we shall explain.



First attempt

A simple strategy could be to:

1. choose a one-step method of order p;

2. choose a natural number N ∈ N and compute the approximate
solution {yn}Nn=0 using the step size h = (XM − x0)/N;

3. choose a large natural number Ñ ∈ N with Ñ > N and
compute the approximate solution {ỹn}Ñn=0 using the step size
h̃ = (XM − x0)/Ñ.

This way, we obtain two approximations yN and ỹÑ of y(XM).

We may then use the (computable) difference ‖ỹÑ − yN‖ to
estimate the (noncomputable) error ‖y(XM)− yN‖.



First attempt

A simple strategy could be to:

1. choose a one-step method of order p;

2. choose a natural number N ∈ N and compute the approximate
solution {yn}Nn=0 using the step size h = (XM − x0)/N;

3. choose a large natural number Ñ ∈ N with Ñ > N and
compute the approximate solution {ỹn}Ñn=0 using the step size
h̃ = (XM − x0)/Ñ.

This way, we obtain two approximations yN and ỹÑ of y(XM).

We may then use the (computable) difference ‖ỹÑ − yN‖ to
estimate the (noncomputable) error ‖y(XM)− yN‖.



First attempt

A simple strategy could be to:

1. choose a one-step method of order p;

2. choose a natural number N ∈ N and compute the approximate
solution {yn}Nn=0 using the step size h = (XM − x0)/N;

3. choose a large natural number Ñ ∈ N with Ñ > N and
compute the approximate solution {ỹn}Ñn=0 using the step size
h̃ = (XM − x0)/Ñ.

This way, we obtain two approximations yN and ỹÑ of y(XM).

We may then use the (computable) difference ‖ỹÑ − yN‖ to
estimate the (noncomputable) error ‖y(XM)− yN‖.



First attempt

A simple strategy could be to:

1. choose a one-step method of order p;

2. choose a natural number N ∈ N and compute the approximate
solution {yn}Nn=0 using the step size h = (XM − x0)/N;

3. choose a large natural number Ñ ∈ N with Ñ > N and
compute the approximate solution {ỹn}Ñn=0 using the step size
h̃ = (XM − x0)/Ñ.

This way, we obtain two approximations yN and ỹÑ of y(XM).

We may then use the (computable) difference ‖ỹÑ − yN‖ to
estimate the (noncomputable) error ‖y(XM)− yN‖.



First attempt

A simple strategy could be to:

1. choose a one-step method of order p;

2. choose a natural number N ∈ N and compute the approximate
solution {yn}Nn=0 using the step size h = (XM − x0)/N;

3. choose a large natural number Ñ ∈ N with Ñ > N and
compute the approximate solution {ỹn}Ñn=0 using the step size
h̃ = (XM − x0)/Ñ.

This way, we obtain two approximations yN and ỹÑ of y(XM).

We may then use the (computable) difference ‖ỹÑ − yN‖ to
estimate the (noncomputable) error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then
we finish the computation.

Else, we

1. increase N so that N > Ñ;

2. compute the approximate solution {yn}Nn=0 using
h = (XM − x0)/N;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ − yN‖ is smaller than the target absolute tolerance TOL,

then we finish the computation. Otherwise, we select a new Ñ
such that Ñ > N, and compute {ỹn}Ñn=0 using h̃ = (XM − x0)/Ñ.

This procedure is repeated (alternating N and Ñ) until ‖ỹÑ − yN‖
falls below the target absolute tolerance TOL.

The following argument suggests that the (computable) difference
‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM)− yN‖.



The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM)− yN‖ is based on

the following calculations.

Let us assume that Ñ > N, and define
α := h̃/h = N/Ñ < 1. For h sufficiently small,

‖ỹÑ−yN‖ = ‖ỹÑ−y(XM)+y(XM)−yN‖ ≤ C (h̃p+hp) = (αp+1)Chp.

Thus,

‖y(XM)− yN‖ = ‖y(XM)− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM)− ỹÑ‖+ ‖ỹÑ − yN‖
≤ Ch̃p + (αp + 1)Chp

≤ αp
(
Chp

)
+ (αp + 1)

(
Chp

)
.

For α < 1, αp � αp + 1 (in relative terms).

Therefore, the term ‖y(XM)− ỹÑ‖ has a minor contribution, and
‖ỹÑ − yN‖ may be used to estimate ‖y(XM)− yN‖.



The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM)− yN‖ is based on

the following calculations. Let us assume that Ñ > N, and define
α := h̃/h = N/Ñ < 1.

For h sufficiently small,

‖ỹÑ−yN‖ = ‖ỹÑ−y(XM)+y(XM)−yN‖ ≤ C (h̃p+hp) = (αp+1)Chp.

Thus,

‖y(XM)− yN‖ = ‖y(XM)− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM)− ỹÑ‖+ ‖ỹÑ − yN‖
≤ Ch̃p + (αp + 1)Chp

≤ αp
(
Chp

)
+ (αp + 1)

(
Chp

)
.

For α < 1, αp � αp + 1 (in relative terms).

Therefore, the term ‖y(XM)− ỹÑ‖ has a minor contribution, and
‖ỹÑ − yN‖ may be used to estimate ‖y(XM)− yN‖.



The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM)− yN‖ is based on

the following calculations. Let us assume that Ñ > N, and define
α := h̃/h = N/Ñ < 1. For h sufficiently small,

‖ỹÑ−yN‖ = ‖ỹÑ−y(XM)+y(XM)−yN‖ ≤ C (h̃p+hp) = (αp+1)Chp.

Thus,

‖y(XM)− yN‖ = ‖y(XM)− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM)− ỹÑ‖+ ‖ỹÑ − yN‖
≤ Ch̃p + (αp + 1)Chp

≤ αp
(
Chp

)
+ (αp + 1)

(
Chp

)
.

For α < 1, αp � αp + 1 (in relative terms).

Therefore, the term ‖y(XM)− ỹÑ‖ has a minor contribution, and
‖ỹÑ − yN‖ may be used to estimate ‖y(XM)− yN‖.



The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM)− yN‖ is based on

the following calculations. Let us assume that Ñ > N, and define
α := h̃/h = N/Ñ < 1. For h sufficiently small,

‖ỹÑ−yN‖ = ‖ỹÑ−y(XM)+y(XM)−yN‖ ≤ C (h̃p+hp) = (αp+1)Chp.

Thus,

‖y(XM)− yN‖ = ‖y(XM)− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM)− ỹÑ‖+ ‖ỹÑ − yN‖
≤ Ch̃p + (αp + 1)Chp

≤ αp
(
Chp

)
+ (αp + 1)

(
Chp

)
.

For α < 1, αp � αp + 1 (in relative terms).

Therefore, the term ‖y(XM)− ỹÑ‖ has a minor contribution, and
‖ỹÑ − yN‖ may be used to estimate ‖y(XM)− yN‖.



The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM)− yN‖ is based on

the following calculations. Let us assume that Ñ > N, and define
α := h̃/h = N/Ñ < 1. For h sufficiently small,

‖ỹÑ−yN‖ = ‖ỹÑ−y(XM)+y(XM)−yN‖ ≤ C (h̃p+hp) = (αp+1)Chp.

Thus,

‖y(XM)− yN‖ = ‖y(XM)− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM)− ỹÑ‖+ ‖ỹÑ − yN‖
≤ Ch̃p + (αp + 1)Chp

≤ αp
(
Chp

)
+ (αp + 1)

(
Chp

)
.

For α < 1, αp � αp + 1 (in relative terms).

Therefore, the term ‖y(XM)− ỹÑ‖ has a minor contribution, and
‖ỹÑ − yN‖ may be used to estimate ‖y(XM)− yN‖.



The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM)− yN‖ is based on

the following calculations. Let us assume that Ñ > N, and define
α := h̃/h = N/Ñ < 1. For h sufficiently small,

‖ỹÑ−yN‖ = ‖ỹÑ−y(XM)+y(XM)−yN‖ ≤ C (h̃p+hp) = (αp+1)Chp.

Thus,

‖y(XM)− yN‖ = ‖y(XM)− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM)− ỹÑ‖+ ‖ỹÑ − yN‖
≤ Ch̃p + (αp + 1)Chp

≤ αp
(
Chp

)
+ (αp + 1)

(
Chp

)
.

For α < 1, αp � αp + 1 (in relative terms).

Therefore, the term ‖y(XM)− ỹÑ‖ has a minor contribution, and
‖ỹÑ − yN‖ may be used to estimate ‖y(XM)− yN‖.



This first adaptive strategy could deliver an accurate solution, but
it is likely to be inefficient: whenever the target tolerance is not
met we need to compute another solution from scratch on a finer
mesh on the entire interval [x0,XM ].



Second attempt

To improve efficiency, we can try to control the consistency error
for each mesh point xn.

We have shown that (up to a constant factor, independent of h)
the global error of a one-step method is bounded by the maximum
of the consistency error.

The hope is therefore that we may compute a sufficiently accurate
numerical solution by adapting the step size locally, that is, by
selecting a suitable hn for every xn to control the local size of the
consistency error.



Second attempt

To improve efficiency, we can try to control the consistency error
for each mesh point xn.

We have shown that (up to a constant factor, independent of h)
the global error of a one-step method is bounded by the maximum
of the consistency error.

The hope is therefore that we may compute a sufficiently accurate
numerical solution by adapting the step size locally, that is, by
selecting a suitable hn for every xn to control the local size of the
consistency error.



Second attempt

To improve efficiency, we can try to control the consistency error
for each mesh point xn.

We have shown that (up to a constant factor, independent of h)
the global error of a one-step method is bounded by the maximum
of the consistency error.

The hope is therefore that we may compute a sufficiently accurate
numerical solution by adapting the step size locally, that is, by
selecting a suitable hn for every xn to control the local size of the
consistency error.



To estimate the consistency error at x = xn, in addition to the one
step method

yn+1 = yn + hΦ(xn, yn; h) =: Ψ(xn, yn; h), n = 0, 1, . . . ;

of order p being used, we consider an additional one-step method

ỹn+1 = ỹn + hΦ̃(xn, ỹn; h) =: Ψ̃(xn, ỹn; h), n = 0, 1, . . . ,

of order p̃, with p̃ > p, and we compute

ERR(xn; h) := ‖Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h)‖. (2)

The idea behind using (2) to estimate the consistency error Tn is
that, if the error has been controlled from x0 up until xn, for some
n ≥ 1, then the difference between y(xn) and yn is “negligible”,
and therefore yn can be assumed to be equal to ỹn.



To estimate the consistency error at x = xn, in addition to the one
step method

yn+1 = yn + hΦ(xn, yn; h) =: Ψ(xn, yn; h), n = 0, 1, . . . ;

of order p being used, we consider an additional one-step method

ỹn+1 = ỹn + hΦ̃(xn, ỹn; h) =: Ψ̃(xn, ỹn; h), n = 0, 1, . . . ,

of order p̃, with p̃ > p, and we compute

ERR(xn; h) := ‖Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h)‖. (2)

The idea behind using (2) to estimate the consistency error Tn is
that, if the error has been controlled from x0 up until xn, for some
n ≥ 1, then the difference between y(xn) and yn is “negligible”,
and therefore yn can be assumed to be equal to ỹn.



Hence,

hTn = y(xn+1)−Ψ(xn, y(xn); h)

= y(xn+1)− Ψ̃(xn, y(xn); h) + Ψ̃(xn, y(xn); h)−Ψ(xn, y(xn); h)

≈ y(xn+1)− Ψ̃(xn, y(xn); h) + Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h)

≈ Chp̃+1 + Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).

Since the left-hand side is of the order O(h × hp) = O(hp+1) and
p̃ > p, it follows that the term ≈ Chp̃+1 on the right-hand side is
“negligible” compared to the “leading-order term”

Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).

Hence,
hTn ≈ Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).



Hence,

hTn = y(xn+1)−Ψ(xn, y(xn); h)

= y(xn+1)− Ψ̃(xn, y(xn); h) + Ψ̃(xn, y(xn); h)−Ψ(xn, y(xn); h)

≈ y(xn+1)− Ψ̃(xn, y(xn); h) + Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h)

≈ Chp̃+1 + Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).

Since the left-hand side is of the order O(h × hp) = O(hp+1) and
p̃ > p, it follows that the term ≈ Chp̃+1 on the right-hand side is
“negligible” compared to the “leading-order term”

Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).

Hence,
hTn ≈ Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).



Hence,

hTn = y(xn+1)−Ψ(xn, y(xn); h)

= y(xn+1)− Ψ̃(xn, y(xn); h) + Ψ̃(xn, y(xn); h)−Ψ(xn, y(xn); h)

≈ y(xn+1)− Ψ̃(xn, y(xn); h) + Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h)

≈ Chp̃+1 + Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).

Since the left-hand side is of the order O(h × hp) = O(hp+1) and
p̃ > p, it follows that the term ≈ Chp̃+1 on the right-hand side is
“negligible” compared to the “leading-order term”

Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).

Hence,
hTn ≈ Ψ̃(xn, ỹn; h)−Ψ(xn, yn; h).



In summary, the locally adaptive strategy proceeds as follows:

at every step xn

1. select an initial local step size hn;

2. compute ERR(xn; hn);

3. if this is smaller than a target tolerance TOL, we set
yn+1 = Ψ(xn, yn; hn); else, we choose a smaller hn and
return to step 2.

To make this algorithm more efficient, it is common to increase the
step hn every time this step has been accepted, that is, to select
βhn for a suitable β > 1.



In summary, the locally adaptive strategy proceeds as follows:

at every step xn

1. select an initial local step size hn;

2. compute ERR(xn; hn);

3. if this is smaller than a target tolerance TOL, we set
yn+1 = Ψ(xn, yn; hn); else, we choose a smaller hn and
return to step 2.

To make this algorithm more efficient, it is common to increase the
step hn every time this step has been accepted, that is, to select
βhn for a suitable β > 1.



In summary, the locally adaptive strategy proceeds as follows:

at every step xn

1. select an initial local step size hn;

2. compute ERR(xn; hn);

3. if this is smaller than a target tolerance TOL, we set
yn+1 = Ψ(xn, yn; hn); else, we choose a smaller hn and
return to step 2.

To make this algorithm more efficient, it is common to increase the
step hn every time this step has been accepted, that is, to select
βhn for a suitable β > 1.



In summary, the locally adaptive strategy proceeds as follows:

at every step xn

1. select an initial local step size hn;

2. compute ERR(xn; hn);

3. if this is smaller than a target tolerance TOL, we set
yn+1 = Ψ(xn, yn; hn); else, we choose a smaller hn and
return to step 2.

To make this algorithm more efficient, it is common to increase the
step hn every time this step has been accepted, that is, to select
βhn for a suitable β > 1.



In summary, the locally adaptive strategy proceeds as follows:

at every step xn

1. select an initial local step size hn;

2. compute ERR(xn; hn);

3. if this is smaller than a target tolerance TOL, we set
yn+1 = Ψ(xn, yn; hn); else, we choose a smaller hn and
return to step 2.

To make this algorithm more efficient, it is common to increase the
step hn every time this step has been accepted, that is, to select
βhn for a suitable β > 1.



Remark
Let TOL be a target absolute error tolerance and let
ERR(xn; hn) < TOL.

Then, the “optimal” β is

β = βn = (p+1)
√
TOL/ERR(xn; hn). (3)

Indeed, if ERR(xn; hn) < TOL, we could have chosen a larger hn
and still satisfied the tolerance criterion.

Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the
ideal step size. Then, we deduce (3), because

ERR(xn;βnhn) ≈ C (βnhn)p+1 = βp+1
n Chp+1

n ≈ βp+1
n ERR(xn; hn).



Remark
Let TOL be a target absolute error tolerance and let
ERR(xn; hn) < TOL. Then, the “optimal” β is

β = βn = (p+1)
√
TOL/ERR(xn; hn). (3)

Indeed, if ERR(xn; hn) < TOL, we could have chosen a larger hn
and still satisfied the tolerance criterion.

Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the
ideal step size. Then, we deduce (3), because

ERR(xn;βnhn) ≈ C (βnhn)p+1 = βp+1
n Chp+1

n ≈ βp+1
n ERR(xn; hn).



Remark
Let TOL be a target absolute error tolerance and let
ERR(xn; hn) < TOL. Then, the “optimal” β is

β = βn = (p+1)
√
TOL/ERR(xn; hn). (3)

Indeed, if ERR(xn; hn) < TOL, we could have chosen a larger hn
and still satisfied the tolerance criterion.

Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the
ideal step size. Then, we deduce (3), because

ERR(xn;βnhn) ≈ C (βnhn)p+1 = βp+1
n Chp+1

n ≈ βp+1
n ERR(xn; hn).



Remark
Let TOL be a target absolute error tolerance and let
ERR(xn; hn) < TOL. Then, the “optimal” β is

β = βn = (p+1)
√
TOL/ERR(xn; hn). (3)

Indeed, if ERR(xn; hn) < TOL, we could have chosen a larger hn
and still satisfied the tolerance criterion.

Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the
ideal step size.

Then, we deduce (3), because

ERR(xn;βnhn) ≈ C (βnhn)p+1 = βp+1
n Chp+1

n ≈ βp+1
n ERR(xn; hn).



Remark
Let TOL be a target absolute error tolerance and let
ERR(xn; hn) < TOL. Then, the “optimal” β is

β = βn = (p+1)
√
TOL/ERR(xn; hn). (3)

Indeed, if ERR(xn; hn) < TOL, we could have chosen a larger hn
and still satisfied the tolerance criterion.

Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the
ideal step size. Then, we deduce (3), because

ERR(xn;βnhn) ≈ C (βnhn)p+1 = βp+1
n Chp+1

n ≈ βp+1
n ERR(xn; hn).



To further improve the efficiency of this adaptive algorithm, it is
convenient to use embedded Runge–Kutta methods, which limit
the number of function evaluations.

Definition
Two Runge–Kutta methods are embedded if they use the same
stages. The Butcher tableau of two embedded Runge–Kutta
methods can be written as

a B[
cT2[
cT1

, where
a B[

cT2
and

a B[
cT1

are the Butcher tableaux of the two Runge–Kutta methods,
respectively.



To further improve the efficiency of this adaptive algorithm, it is
convenient to use embedded Runge–Kutta methods, which limit
the number of function evaluations.

Definition
Two Runge–Kutta methods are embedded if they use the same
stages. The Butcher tableau of two embedded Runge–Kutta
methods can be written as

a B[
cT2[
cT1

, where
a B[

cT2
and

a B[
cT1

are the Butcher tableaux of the two Runge–Kutta methods,
respectively.



Example

The Heun1–Euler method has the Butcher tableau:

0 0 0
1 1 0

1/2 1/2
1 0

, where

0 0 0
1 1 0

1/2 1/2
and

0 0 0
1 1 0

1 0

are the Butcher tableaux of Heun’s method

yn+1 = yn +
h

2
[f (xn, yn) + f (xn + h, yn + hf (xn, yn))]

and the explicit Euler method yn+1 = yn + hf (xn, yn), respectively.

Example

Matlab integrators for ODEs (such as the functions ode45,
ode23, etc.) are based on embedded Runge–Kutta methods.2

1Karl Heun (3 April 1859, Wiesbaden – 10 January 1929, Karlsruhe)
2See L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite (1997).


