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Motivation

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√

y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]



Motivation

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√

y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]



Motivation

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√

y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]



Motivation

Example (MATLAB)

Compare the implicit midpoint rule with the explicit and implicit
Euler methods for the following initial-value problem:

d

dt

(
y1
y2

)
=

(
0 1
−1 0

)(
y1
y2

)
,

(
y1
y2

)
(0) =

(
0
1

)
.

Exact solution: y1(t) = sin t, y2(t) = cos t.

Clearly,

Q(t) :=
√

y21 (t) + y22 (t) = 1 for all t ≥ 0.

[Run the MATLAB code: testcase2a.m]





The implicit midpoint rule for y′(t) = f(y(t)), y(0) = x

yn+1 − yn
h

= f

(
yn+1 + yn

2

)
, n = 0, 1, . . . ,

y0 = x = given.

Exercise. Let (·, ·) be the inner product in Rd and let ‖ · ‖ be the
associated Euclidean norm in Rd . Suppose that f : D ⊂ Rd → Rd

and (f(z), z) = 0 for all z ∈ D. Show that if y′ = f(y), y(0) = x
and yn is the implicit midpoint approximation of y, then:

(a) ‖y(t)‖2 = ‖x‖2 for all t ≥ 0;

(b) ‖yn‖2 = ‖x‖2 for all n ∈ N0 := N ∪ {0}.

Hint: Take the inner product of
(a) the ODE with y(t); and
(b) the implicit midpoint rule with yn+1+yn

2 .
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Structure-preserving integrators

In many time-dependent physical problems modelled by initial-
value problems, certain relevant physical quantities (e.g. energy,
mass, volume, etc.), are preserved during the course of evolution,
i.e. they are constant in time.

One needs to preserve some of these quantities at the discrete level.

For simplicity, we restrict ourselves to the autonomous ODE

y′ = f(y), where f : D → Rd , (1)

(where now y is considered to be a function of t ∈ [0,∞), and
y′ := dy/dt), subject to the initial condition

y(0) = x,

where x ∈ D, and D is a nonempty open subset of Rd .
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Definition
For t ≥ 0, let Φt : D → Rd denote the function that maps an
initial datum x ∈ D into y(t) ∈ Rd , where y(t) is the solution at
time t to y′ = f(y), y(0) = x (tacitly assuming that the solution
t ∈ [0,∞) 7→ y(t) ∈ Rd to this initial-value problem, for each
x ∈ D, exists and that it is unique).

The family {Φt}t≥0 is called the flow of (1) (defined on D ⊂ Rd).

Remark
The function t 7→ Φtx is the solution to y′ = f(y), y(0) = x.
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Using the concept of flow, we can clarify what is a “preserved
quantity”.

Definition
A first integral of (1) is a function I : D → R that satisfies
I (Φtx) = I (x) for every x ∈ D and every admissible t ≥ 0.
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Lemma
I is a first integral of (1) if, and only if, d

dt I (Φtx) = 0 for every
x ∈ D and every admissible t ≥ 0. This is equivalent to:

DI (x) · f(x) = 0 for every x ∈ D,

where DI (x) := grad I (x) = ( ∂I∂x1 , . . . ,
∂I
∂xd

)T.

Proof. The first part of the lemma is trivial. The second part
follows by applying the chain rule on the left-hand side of the
equality d

dt I (Φt(x)) = 0. Indeed, for all t ≥ 0,

0 =
d

dt
I (Φt(x)) =

d

dt
I (y(t)) = DI (y(t))·y′(t) = DI (y(t))·f(y(t)),

where y is the solution of the initial-value problem y′(t) = f(y(t)),
y(0) = x ∈ D. Thus in particular 0 = DI (y(0)) · f(y(0)), and the
assertion follows, because y(0) = x ∈ D. �
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For a systematic investigation, we consider first integrals that can
be expressed as polynomials.

Definition
We shall say that a first integral I of an autonomous system is a
polynomial of degree n ∈ N if

I (x) =
∑

α∈Nd
0 , |α|≤n

βαxα, (2)

where βα ∈ R, α = (α1, . . . , αd) ∈ Nd
0 , |α| =

∑d
i=1 αi , and

xα = xα1
1 · · · x

αd
d ; in other words, I is a multivariate polynomial of

degree n in x ∈ Rd .
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Example

Linear first integrals are of the form I (x) = bTx + c (with b ∈ Rd ,
and c ∈ R).

Example

Quadratic first integrals are of the form I (x) = xTMx + bTx + c
(with M = MT ∈ Rd×d , b ∈ Rd , and c ∈ R).
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The next two theorems summarize a few key facts about
structure-preserving Runge–Kutta methods.

Theorem
Every Runge–Kutta method preserves linear first integrals.

Proof: I (x) = bTx + c implies that DI (x) ≡ b; thus, by the
Lemma, 0 = DI (x) · f(x) = b · f(x) for all x ∈ D.
Consider the R-stage Runge–Kutta method

yn+1 = yn + h(c1k1 + · · ·+ cRkR).

Hence,

I (yn+1)− I (yn) = bT(yn+1 − yn)

= h bT(c1k1 + · · ·+ cRkR) = 0 + · · ·+ 0 = 0.

Theorem
Gauss-collocation methods (i.e. Runge–Kutta methods based on
function-evaluations at points of Gaussian quadrature rules)
preserve quadratic first integrals.
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Simple examples of Gauss-collocation methods are the Gauss–
Legendre–Runge–Kutta methods, based on function-evaluations at
points of Gauss–Legendre quadrature rules.

Example

The Gauss–Legendre method of order two is the implicit
midpoint rule,

yn+1 = yn + h f

(
tn +

1

2
h,

1

2
yn +

1

2
yn+1

)
which has Butcher tableau

1/2 1/2

1
.
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Example

The Gauss–Legendre method of order four

yn+1 = yn + h

(
1

2
k1 +

1

2
k2

)
, where

k1 = f

(
t +

(
1

2
− 1

6

√
3

)
h, yn +

1

4
k1 +

(
1

4
− 1

6

√
3

)
k2

)
,

k2 = f

(
t +

(
1

2
+

1

6

√
3

)
h, yn +

(
1

4
+

1

6

√
3

)
k1 +

1

4
k2

)
has Butcher tableau

1
2 −

1
6

√
3 1

4
1
4 −

1
6

√
3

1
2 + 1

6

√
3 1

4 + 1
6

√
3 1

4

1
2

1
2

.



Unfortunately, there is no consistent Runge–Kutta method that
preserves polynomial first integrals of degree higher than 2; more
precisely, the following negative result holds.

Theorem
If n ≥ 3, then there is no consistent Runge–Kutta method that
preserves every polynomial first integral of degree n for every
autonomous ODE.
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We conclude with a few results concerning the conservation of a
structure that is at the heart of classical mechanics: conservation
of the symplectic product.

First, we recall the notion of Hamiltonian differential equation from
classical mechanics.

Definition
A Hamiltonian differential equation is an ODE of the form

p′ = −DqH(p,q), q′ = DpH(p,q), (3)

where the function H : Rd × Rd → R is called the Hamiltonian.
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Theorem
The Hamiltonian H is a first integral of (3).

Proof. This follows by applying the chain rule:

d

dt
H(p,q) = DpH(p,q) · p′ + DqH(p,q) · q′ = 0. �

Lemma
The ODE (3) is equivalent to

y′ = J−1DH(y), (4)

where J =

(
0 I

−I 0

)
∈ R2d×2d and y :=

(
p

q

)
∈ R2d .

The proof of this lemma is left as an exercise.
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The following definition is inspired by the previous lemma.

Definition
The bilinear map

ω : R2d × R2d → R, (a,b) 7→ ω(a,b) := aTJ b

is called the symplectic product of a and b.



The following definition is inspired by the previous lemma.

Definition
The bilinear map

ω : R2d × R2d → R, (a,b) 7→ ω(a,b) := aTJ b

is called the symplectic product of a and b.



Definition
A continuously differentiable map Φ : D ⊂ R2d → R2d is called
symplectic if

ω(DΦ(x)a,DΦ(x)b) = ω(a,b)

for every x ∈ D and every pair (a,b) ∈ R2d × R2d .

Remark
In other words, a map Φ is symplectic if its Jacobian matrix DΦ(x)
(evaluated at a generic point x) preserves the simplectic product.

This concept is similar to the property of orthogonal matrices that
they preserve the Euclidean inner product, i.e. if O ∈ Rd×d is an
orthogonal matrix then 〈Oa,Ob〉 = 〈a,b〉 for every pair (a,b) in
Rd × Rd , where 〈·, ·〉 is the Euclidean inner product in Rd .
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orthogonal matrix then 〈Oa,Ob〉 = 〈a,b〉 for every pair (a,b) in
Rd × Rd , where 〈·, ·〉 is the Euclidean inner product in Rd .
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The following result, due to Poincaré asserts that the

Hamiltonian flow is a symplectic map,

which explains why the concept of symplectic map is so relevant.

Theorem (Poincaré)

If H is a twice continuously differentiable Hamiltonian, then the
flow Φt of an Hamiltonian differential equation satisfies the
following property: for each x ∈ D there exists a δ > 0 such that

ω(DΦt(x)a,DΦt(x)b) = ω(a,b)

for every (a,b) ∈ R2d × R2d and all t ∈ [0, δ).
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Since Hamiltonian flows are symplectic, we are interested in
symplectic one-step methods, in the following sense.

Definition
Consider (4) subject to the initial condition y(0) = x, for x ∈ D,
and let x 7→ Ψ(0, x; h) be a one-step method for (4), which maps
the initial datum x ∈ D into a numerical approximation
Ψ(0, x; h) ∈ Rd of y(h) ∈ Rd over a single time step h > 0.

The one-step method Φh : x 7→ Ψ(0, x; h) is said to be symplectic
if Φh : x 7→ Ψ(0, x; h) defines a symplectic map on every compact
subset K ⊂ D, whenever H is twice continuously differentiable and
h > 0 is sufficiently small.
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The following theorem provides a convenient sufficient condition
for a Runge–Kutta being symplectic, although for an arbitrary
one-step method one would still need to appeal to the previous
definition to verify that the method in question is symplectic.

Theorem
Every Runge–Kutta method that preserves quadratic first integrals
is symplectic.
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