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Model problem: heat equation in one space dimension

As a simple but representative model problem we focus on the unsteady
diffusion equation (heat equation) in one space dimension:

ou  d%u
ot = o M

which we shall consider for x € (—o0,00) and t > 0, subject to the initial
condition
U(X7O) = UO(X)7 X € (_00700)7

where ug is a given function.



Finite difference approximation of the heat equation

We take our computational domain to be
{(x,t) € (—o0,0) x [0, T]},

where T > 0 is a given final time.
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differences as follows.
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We consider a finite difference mesh with spacing Ax > 0 in the
x-direction and spacing At = T /M in the t-direction, with M > 1, and
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Let x; = jAx and t;, = mAt, and note that

Ou u(j, tmy1) — u(js tm)
iytm) =~
8t(XJ’ m) At
and
82” ~ U(Xj—i-la tm) — 2U(XJ'7 tm) + U(Xj—la tm)

o2 9 tm) (Ax)?



This motivates us to approximate the heat equation at the point (x;, t)

by the following explicit Euler scheme:

m—+1
U - Ur U - 2U+ U,

= it . j=0,41,42,...

At (Ax)?

U =uw(x), Jj=0+1,+2,...
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This motivates us to approximate the heat equation at the point (x;, t)
by the following explicit Euler scheme:

m+1
Uj B Ujm _ jril - 2U.Im + UJr21 i —0.4+1.4+2
At (Ax)? v ST LTS

U =uw(x), Jj=0+1,+2,...

Equivalently, we can write this as
1
UM = U+ (Ui =207 + U),

U =uw(x), Jj=0+1,+2,...

where p = ax?-

Thus, UJ-erl can be explicitly calculated, for all j = 0,+1,+2,..., from

the values Uj”]rl, UJ-’", and Uj”ll from the previous time level.



Alternatively, if instead of time level m the expression on the right-hand
side of the explicit Euler scheme is evaluated on the time level m+ 1, we
arrive at the implicit Euler scheme:

m+1 m+1 m—+1 m+1
A 5 Wi M . j=0,+1,42, ...
At (Ax)?

U =uw(x), j=0+1,%2,....



The explicit and implicit Euler schemes are special cases of a more general
one-parameter family of numerical methods for the heat equation, called
the #-method, which is a convex combination of the two Euler schemes,
with a parameter 6 € [0, 1].
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The explicit and implicit Euler schemes are special cases of a more general
one-parameter family of numerical methods for the heat equation, called
the #-method, which is a convex combination of the two Euler schemes,
with a parameter 6 € [0, 1].

The 0-method is defined as follows:

m—+1 m m m m m+1 m+1 m+1
i (1-0) U —2U7+ U, Ul — 207 + U
At (Ax)2 (Ax)2 ’
ljjo = UO(XJ')7 j:07i17i27"'7

where 6 € [0,1] is a parameter.

For # = 0 it coincides with the explicit Euler scheme, for 6 =1 it
is the implicit Euler scheme, and for # = 1/2 it is the arithmetic average of
these, and is called the Crank—Nicolson scheme.



Accuracy of the #-method

In order to assess the accuracy of the 8-method for the Dirichlet
initial-boundary-value problem for the heat equation we define its
consistency error by

m—+1 m m m m—+1 m—+1 m+1
Tm . u; — qu" -9 ulty — 2uj +u,y 9 uiy — 2uj +uy
S At (Ax)? (Ax)?
where

u" = u(xj, tm).

)



We shall explore the size of the consistency error by performing a Taylor
series expansion about a suitable point.
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Note that

m+1/2
m—+1

1 1/1 \? 1/1 1\’
u—+ EAt Ut+ 5 (2At) Utt+ 6 (2At) uttt+ s

1 11, \° 1/1. \°
U;n = [U_zAtUt+2<2At> Utt_6<2At> uttt+"'

i

m+1/2

J



We shall explore the size of the consistency error by performing a Taylor
series expansion about a suitable point.

Note that
m+1/2
1 1/1. )2 1/1.\°
an+1 = u—+ EAt u; + 5 (2At) U + 6 (2At) Uget + -+ )
J
m+1/2
1 1/1.\2 1/1.\°
U;n = [U — EAt Us —+ 5 <2At> U — 6 <2At> Uttt + -
J
Therefore,

U’-‘n+1 _ um l m+1/2
R e+ — (A1) e + - -
24 ;



Similarly,

(1-0) ully —2ul +uy Ly fﬁl 2qu]1+1 + U;'fll
(Ax)? (Ax)?
m+1/2
= |:UXX + — (AX) Usooxx + (Ax) Usosoocx + - :|
Jj
1 m+1/2
+ <0 — 2> At |:UXXt + — 12 (AX) Uyexxext + - :|
J
1
(B8 [t + - I

8



Combining these, we deduce that

T =|[u — uxx]mﬂ/2

1 1 ) m+1/2
+ (2 > At Uxxt — E (AX) Uxxxx:|j

m+1/2

+ 4 (At) Uttt — é (At) uxxtt:|

I\J

J
1 ) m+1/2
— —0)At (AX)2 Uxxxxt — == (AX)4 Uxexxxxx + -
2 6! ;

1
12
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Combining these, we deduce that

T = |[ur — uxx]m+1/2

/1 1 ) m+1/2
+ _(2 — 9> At U — 0 (Ax) UXXXXL

1 m+1/2
+ | = (At g — 2 (At) Ut
| 24 8 ;
11 2 2 4 m+1/2
+ _E <2 - 0>At(AX) Usxxxt — 5 (AX) uXXXXXx:|j 4o

Note however that the term contained in the box vanishes, as v is a
solution to the heat equation. Hence,

m_JO ((Ax)? + (At)?) for 0 =1/2,
;o { O ((Ax)? + At) for 6 # 1/2.
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Thus, in particular, the explicit and implicit Euler schemes have
consistency error
2
T =0 ((Ax)* + At),
while the Crank—Nicolson scheme has consistency error

T" =0 ((Ax)* + (At)?).
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