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Stability of finite difference schemes

To replicate the stability property of the heat equation in the L, norm at
the discrete level, we need a suitable notion of stability.
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Stability of finite difference schemes

To replicate the stability property of the heat equation in the L, norm at
the discrete level, we need a suitable notion of stability.

We shall say that a finite difference scheme for the unsteady heat equation
is (practically) stable in the ¢/, norm, if

1U™le, < | UPlley,  m=1,..., M,

where
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1U™lle, = | Ax Y U

j=—00

We shall use the semidiscrete Fourier transform to explore the stability of
finite difference schemes.
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The semidiscrete Fourier transform of a function U defined on the infinite
mesh x; = jAx, j = 0,£1,£2,.. ., is:
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Definition
The semidiscrete Fourier transform of a function U defined on the infinite
mesh x; = jAx, j = 0,%£1,£2,..., is:

O(k) = Ax Z Uje 9, k € [-7/Ax, 7/ Ax].

j==00

We shall also need the inverse semidiscrete Fourier transform, as well the
discrete counterpart of Parseval's identity that connect these transforms,

similarly as in the case of the Fourier transform and its inverse considered
earlier.




Definition
Let U be defined on the interval [—7/Ax,7/Ax]. The inverse
semidiscrete Fourier transform of U is defined by

1 T/Ax VA
= o U(k)e™=* dk.
—7/Ax




Definition
Let U be defined on the interval [—7/Ax,7/Ax]. The inverse
semidiscrete Fourier transform of U is defined by

1 T/Ax VA
= o U(k)e™=* dk.
—7/Ax

We then have the following result.




Lemma (Discrete Parseval's identity)

Let
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Lemma (Discrete Parseval's identity)

Let

1/2

oo R T/Ax 1/2
[Ulle, = | Ax D U1 and ||U||L2=</ |U(k)|2dk> :

j——o0 —7/Ax

If ||U|lg, is finite, then also ||U]|., is finite, and

N
Ulle, = —=|U||L,-
1Ulle, \/%” I,

The proof of this is similar to that of Parseval's identity discussed earlier,
and we shall therefore leave its proof as an exercise.




Stability analysis of the explicit Euler scheme

By inserting
1 w/Ax

uym

1kjAx [ym
/; eEXUM (k) dk

B 2w —7/Ax
into the Euler scheme we deduce that
i m/Ax ezijx 0m+1(k) — Um(k)
27T 77\'/AX At
1 7/ Ax ezk(j+1)Ax _ 2ezijx + ezk(j—l)Ax
- g —m/Ax (AX)2

dk

0™ (k) dk.
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into the Euler scheme we deduce that
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1 7/ Ax ezk(j+1)Ax _ 2ezijx + ezk(j—l)Ax
- Z —m/Ax (AX)2
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Therefore, we have that

LA s O - Om(k)

— dk
27'(' —71'/AX At

1 w/Ax ) tkAx _ 9 —1kAx
kitix © re 0™ (k) dk.

1kj Ax

T 21 ) a/an (Ax)?

0™ (k) dk.



By comparing the left-hand side with the right-hand side we get
0m+1(k) — Om(k) + Iu(ezkAx 24 e—zkAX)Um(k)

for all wave numbers k € [—7/Ax, m/Ax].

LAfter: Richard Courant, Kurt Friedrichs, and Hans Lewy (Uber die partiellen
Differenzengleichungen der mathematischen Physik. Mathematische Annalen,
100:32-74, 1928).



By comparing the left-hand side with the right-hand side we get
O™ (k) = Om(K) + (e — 24 ¢~ k8) 0™ (k)
for all wave numbers k € [—7/Ax, 7/Ax]. Thus we have
0™ (k) = Mk) O™(k),

where
)\(k) =14+ 'u(ezkAx 24 e—zkAX)

is the amplification factor and

o At
1= (ax)?

is called the CFL number!.

LAfter: Richard Courant, Kurt Friedrichs, and Hans Lewy (Uber die partiellen
Differenzengleichungen der mathematischen Physik. Mathematische Annalen,
100:32-74, 1928).



By the discrete Parseval identity stated in Lemma 3 we have that

. A
U™ e, = 0",

V2T
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v 22T
= max AR U7
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By the discrete Parseval identity stated in Lemma 3 we have that

U™ e, = 0™,

V2
1 ~
—|INy™
\/g H HL2
1 ym
< max AR |07,

v 22T
= max AR U7

In order to mimic the L, norm bound, we would like to ensure that
U™ e, < IU™e,,  m=0,1,...,M—1.

Thus we demand that
mfx|)\(k)\ <1,

i.e., that
mfx|1 +,LL(eZkAX —9 +e—zkAx)| S 1.



Using Euler’s formula
e'Y = cosp + 1sin

and the trigonometric identity
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Using Euler’s formula
e'Y = cosp + 1sin

and the trigonometric identity

2

1— = 2si
cos sin” 2

we can restate this as follows:

kA
1 — 4y sin? <2X)‘ <1

Equivalently, we need to ensure that
kA
-1<1-— 4,usin2 <2X>

This holds if, and only if, = (AATt)Q

max
k

IN

1 Vke[-n/Ax,m/Ax].

IN
-



Thus we have shown the following result.
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Thus we have shown the following result.

Theorem
Suppose that UJf" is the solution of the explicit Euler scheme

yrtt-ur up, —2ur+ U
/ S T SRl 041,42,

)

At (Ax)?

U}’ =u(x), Jj=0,£1,42,...,
At . Then,

and p = B2

I\)II—‘

U™, <[y, m=1,2,..., M.

)
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Thus we have shown the following result.

Theorem
Suppose that Uf“ is the solution of the explicit Euler scheme

m+1
VE U — AP U

_ i . j=0,%1,42 ...

At (Ax)?

U =u(x), Jj=0,41,42,...,

[Ule, < 1 UP0ley,  m=1,2,...,M.

)

(1)

Hence, the explicit Euler scheme is conditionally practically stable, the
condition for stability being that = At/Ax? < 1/2. One can also show

that if 4 > 1/2, then (1) will fail.




Stability analysis of the implicit Euler scheme

We shall now perform a similar analysis for the implicit Euler scheme for
the heat equation:
m+1 m m+1 m+1 m+1
Uj - U; _ UJ-Jrl — 2Uj + Uj-f1
At (Ax)? ’

j=0,+1,42,...

U =uw(x), Jj=0+1,+2,....
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Stability analysis of the implicit Euler scheme

We shall now perform a similar analysis for the implicit Euler scheme for
the heat equation:

m+1 m+1 m+1 m+1
i S W M/ W NPT S
At (Ax)?

U =uw(x), Jj=0+1,+2,....
Equivalently,

UJ{n-‘rl _ M(Ujp_:_—il-l _ 2U1{n+1 + anl—il-l) — Ujm

U =uw(x), Jj=0+1,+2,...,
where, again,
At
(Ax)?

ILL:

11 / 20



Using an identical argument as for the explicit Euler scheme, we find that
the amplification factor is now
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Using an identical argument as for the explicit Euler scheme, we find that

the amplification factor is now

1

k) =

(k) 1+ 4psin? (59%)
Clearly,

max |A(k)| <1
for all values of
At
SERVNYE
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Using an identical argument as for the explicit Euler scheme, we find that
the amplification factor is now

1
A(k) = D (kDx

1+ 4psin (T)

Clearly,
max |A(k)| <1
for all values of
At
SERVNYE

Thus we have the following result.



Theorem
Suppose that UJf” is the solution of the implicit Euler scheme

m+1 m+1 m+1 m+1
Ut up upg -2urt o

= 1 S

At (Ax)?

U =uwl(x),  j=0,+1,42,....
Then, for all At > 0 and Ax > 0,

[U™ley < U0,  m=1,2,...,M.

13 / 20



Theorem
Suppose that U™ is the solution of the implicit Euler scheme

m+1 _ m m+1 m+1 m+1
R e R

= , j=0,41,42 ...

At (Ax)?

U =uw(x), Jj=0+1,+2,....
Then, for all At > 0 and Ax > 0,

U™, < [Ny, m=1,2,..., M.

(2)

Thus, the implicit Euler scheme is unconditionally practically stable,

meaning that the bound (2) holds without any restrictions on Ax and At.




Stability analysis of the 6-scheme

Consider the 0-scheme:

m+1 m
vt -y

At

m m m-+1 m-+1 m-+1
207+ U, Uy 2207 + U

Uit
(1-0) (Ax)? (Ax)? ’

U =uw(x), Jj=0=+1,£2,...,

where 6 € [0,1] is a parameter.
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Stability analysis of the 6-scheme

Consider the 0-scheme:

m+1 m
v -y

At

m m m-+1 m-+1 m-+1
207+ U, Uy 2207 + U

(Ax)? (Ax)? ’

uym
(1 o 9) Jj+1

U =uw(x), Jj=0=+1,£2,...,

where 6 € [0,1] is a parameter.

For 8 = 0 it is the explicit Euler scheme, for 8 = 1 it is the implicit Euler
scheme, and for § = 1/2 it is the arithmetic average of the two Euler
schemes, and is called the Crank—Nicolson scheme.



Using an identical argument as in the case of the two Euler methods, we
find that

Mk) =1 = —4(1—0)psin? <k§X> — 40 pu \(k) sin® (kgx> :
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Using an identical argument as in the case of the two Euler methods, we
find that

Mk) =1 = —4(1—0)psin? <k§X> — 40 pu \(k) sin® (kgx> :
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_ 1—4(1—0)usin® (X5%)

(k) = 14+ 46u sin? (kéﬁ)
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For practical stability, we demand that
IA(k)| <1 Vk € [-7/Ax, 7/ Ax],
which holds if, and only if,

2(1—20)u < 1.
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For practical stability, we demand that
IA(k)| <1 Vk € [-7/Ax, 7/ Ax],
which holds if, and only if,

2(1-20)u < 1.

Thus we have shown that:
e For 6 € [1/2,1] the #-scheme is unconditionally practically stable;

e For 0 € [0,1/2) the f-scheme is conditionally practically stable, the
stability condition being that

< — .
1= 51— 20)



Von Neumann stability

In certain situations, practical stability is too restrictive and we need a less
demanding notion of stability.
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Von Neumann stability

In certain situations, practical stability is too restrictive and we need a less
demanding notion of stability.

Definition (von Neumann stability)

We shall say that a finite difference scheme for the unsteady heat equation
on the time interval [0, T] is von Neumann stable in the ¢, norm, if
there exists a positive constant C = C(T) such that

0
HUmH&SCHU Hfza m:1,...,M:E,

where
1/2

o0
U™ = | Ax Y UM

j==c0
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Clearly, practical stability implies von Neumann stability, with stability
constant C = 1.
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Clearly, practical stability implies von Neumann stability, with stability
constant C = 1.

As the stability constant C in the definition of von Neumann stability
may dependent on T, and when it does then, typically, C(T) — +oo as
T — 400, it follows that, unlike practical stability which is meaningful for
m=1,2,..., von Neumann stability makes sense on finite time intervals
[0, T] (with T < 00) and for the limited range of 0 < m < T /At, only.



Von Neumann stability of a finite difference scheme can be easily verified
by using the following result.
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Von Neumann stability of a finite difference scheme can be easily verified
by using the following result.

Lemma

Suppose that the semidiscrete Fourier transform of the solution {U["}72,,

m=20,1,..., %, of a finite difference scheme for the heat equation
satisfies
U™ (k) = A(k)U™(k)

and
IAN(Kk)| <1+ GAt  Vk e [-n/Ax,7/Ax].

Then the scheme is von Neumann stable. In particular, if Co = 0 then the
scheme is practically stable.




PROOF: By Parseval's identity for the semidiscrete Fourier transform

1 B 1
U™ le, = U™, =

1 1 .
— — [|AU™

1 N
< m = m .
< \/ﬂmkaXIA(k)l U™, mkaXIA(k)l U™,
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PROOF: By Parseval's identity for the semidiscrete Fourier transform

1 ~ 1 o
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U = 0™ ey = = 120"
1 N
< — k Ny, = k ..
< e max AR 107, = mgx AR |07
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PROOF: By Parseval's identity for the semidiscrete Fourier transform

1 ~ 1 o
Um+1 — Um+1 — )\Um
U™y = =107 = o= A0y
< 0™, = k ™,
< = max A 107, = max MG U7
Hence,

U™ g, < (1+ GAD|U™le,,  m=0,1,...,M—1.
Therefore,
U™, < (1 + GoAt)™||U°e,, m=1,..., M.
As (14 CAt)™ < eCmAt < oGT it follows that
Ul <TI0, m=1,2,..., M,

implying von Neumann stability, with C = e®7T. o



