
Chapter 2

Enzyme kinetics

Biochemical reactions are extremely important for biological function. For example, they are

involved in metabolism and its control, immunological responses, and cell-signalling processes.

Biochemical processes are often controlled by enzymes (Figure 2.1, left). Enzymes are proteins

that catalyse biochemical reactions by lowering the activation energy. Even when present in very

small amounts, enzymes can have a dramatic e↵ect (Figure 2.1, right). Table 2.1 illustrates how

e↵ective enzymes can be at accelerating reactions in biochemical systems.

enzyme complex enzyme

substrate products

Figure 2.1: Left: How do enzymes work? An enzyme has an active site where the substrate and
enzyme fit together so that the substrate reacts. After the reaction, the products are released
and the enzyme assumes its original shape. Right: The enzyme catecholase catalyses a reaction
between the molecule catechol and oxygen. The product of this reaction is polyphenol, the brown
substance that accumulate when apples are exposed to air.

In this chapter we will focus on developing and analysing models for enzyme kinetics. These can

be thought of as a special case of an interacting species model. In all cases we will neglect spatial

variation, assuming the systems are well-mixed. As such, the models will consist of systems of

ordinary di↵erential equations that describe how the concentrations of the reactants evolve over

time.
3
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Enzyme Substrate Product Rate without Rate with Acceleration
enzyme enzyme due to enzyme

Hexokinase Glucose Glucose < 0.0000001 1300 > 13 billion
6-Phosphate

Phosphorylase – – < 0.000000005 1600 > 320 billion
Alcohol Ethanol Acetaldehyde < 0.000006 2700 > 450 million

Dehydrogenase
Creatine Creatine Creatine < 0.003 40 > 13, 000
Kinase Phosphate

Table 2.1: Examples illustrating the dramatic e↵ect that enzymes can have on reaction rates.

2.1 The Law of Mass Action

Throughout this chapter, we will consider reactions involving m chemical species C1, . . . , Cm.

• The concentration of Ci, denoted ci, is defined to be the number of molecules of Ci per

unit volume.

• A standard unit of concentration is moles m�3, often abbreviated to mol m�3. Recall that

1 mole = 6.023 ⇥ 1023 molecules.

We will use the Law of Mass Action to construct the reaction rates.

The Law of Mass Action. A chemical reaction proceeds at a rate proportional to the

concentrations of the participating reactants. The constant of proportionality is called the

rate constant.

Suppose C1, . . . , Cm undergo the reaction

�1C1 + �2C2 + . . .+ �mCm

kf
GGGGGGBF GGGGGG

kb

⌫1C1 + ⌫2C2 + . . .+ ⌫mCm. (2.1)

The Law of Mass Action states that the forward reaction proceeds at rate

kfc
�1
1 c

�2
2 . . . c

�m
m , (2.2)

while the backward (or reverse) reaction proceeds at rate

kbc
⌫1
1 c

⌫2
2 . . . c

⌫m
m , (2.3)

where kf and kb are (non-negative) dimensional constants.
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Note 1. Strictly speaking, to treat kf , kb as constant we must assume that the temperature is

constant. This is a good approximation for most biochemical reactions occurring in, for example,

physiological systems. However, if one wanted to model reactions that produce significant

amounts of heat (for example, burning petrol), one must include temperature dependence in

kf and kb and, subsequently, keep track of how the temperature of the system changes as the

reaction proceeds. This typically makes the modelling more di�cult. To keep things simple here,

we will assume that we are dealing with systems where the temperature remains approximately

constant as the reaction proceeds.

Note 2. The Law of Mass Action for chemical reactions can be derived from statistical

mechanics under quite general conditions (see, for example [12]).

Note 3. The Law of Mass Action is used in a variety of biological scenarios. For example,

we use it to write down equations describing interactions between people infected with, and

people susceptible to, a pathogen during an epidemic. In such circumstances the validity of

the Law of Mass Action must be taken as a modelling assumption as one cannot rely on

thermodynamic/statistical mechanical arguments to justify the Law of Mass Action.

2.1.1 Example: stoichiometry

Suppose m molecules of A react reversibly with n molecules of B to create C:

mA+ nB

k1
GGGGGGBF GGGGGG

k�1

C. (2.4)

Then the Law of Mass Action takes the form

da

dt
= �mk1a

m
b
n +mk�1c, (2.5)

db

dt
= �nk1a

m
b
n + nk�1c, (2.6)

dc

dt
= k1a

m
b
n

� k�1c, (2.7)

as m molecules of A and n molecules of B must collide to produce one molecule of C. Note that

mass conservation supplies

a+mc = constant, b+ nc = constant. (2.8)
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2.2 Michaelis-Menten kinetics

Michaelis-Menten kinetics approximately describe the dynamics of a number of enzyme systems.

The reactions are

S + E

k1
GGGGGGBF GGGGGG

k�1

C and C

k2
GGGA P + E, (2.9)

where C represents the complex SE, and s, e, p and c denote the concentrations of S, E, P and

C, respectively. From the Law of Mass Action, we can derive the following ordinary di↵erential

equations for s, e, p and c:

ds

dt
= �k1se+ k�1c; (2.10)

dc

dt
= k1se � k�1c � k2c; (2.11)

de

dt
= �k1se+ k�1c+ k2c; (2.12)

dp

dt
= k2c. (2.13)

Note that the equation for p decouples and, hence, we can neglect it (at least initially).

The initial conditions are

s(0) = s0, e(0) = e0 ⌧ s0, c(0) = 0, p(0) = 0. (2.14)

Key Point: Conservation laws. In systems described by the Law of Mass Action, linear

combinations of the variables are often conserved. In this example we have

d

dt
(e+ c) = 0 =) e(t) = e0 � c(t), (2.15)

and, hence, the equations simplify to

ds

dt
= �k1(e0 � c)s+ k�1c, (2.16)

dc

dt
= k1(e0 � c)s � (k�1 + k2)c. (2.17)

The dynamics of p and e are readily achievable once the dynamics of s and c are known.
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2.2.1 Non-dimensionalisation

We non-dimensionalise as follows

⌧ = k1e0t, u =
s

s0
, v =

c

e0
, � =

k2

k1s0
, ✏

def
=

e0

s0
⌧ 1, K

def
=

k�1 + k2

k1s0
, (2.18)

which yields

du

d⌧
= �u+ (u+K � �)v, (2.19)

✏
dv

d⌧
= u � (u+K)v, (2.20)

where u(0) = 1, v(0) = 0 and ✏ ⌧ 1.

A typical value for ✏ is ✏ ⇠ 10�6. It is tempting to set ✏ = 0 and analyse the system of ordinary

di↵erential equations. However, this gives

v =
u

u+K
, (2.21)

which is inconsistent with the initial conditions since

v(0) = 0 6=
1

1 +K
=

u(0)

u(0) +K
. (2.22)

We have a singular perturbation problem; there must be a (boundary) region with respect to the

time variable around t = 0 where v
0 ⌧ O(1). Indeed, for the stated initial conditions we find

v
0(0) ⇠ O(1/✏), with u(0), v(0)  O(1). This gives us the scaling we need to perform a singular

perturbation analysis.

2.2.2 Singular perturbation investigation

We first re-scale time to consider dynamics in the very early stages of the reaction. We let

� =
⌧

✏
, (2.23)

with

u(⌧, ✏) = ũ(�, ✏) = ũ0(�) + ✏ũ1(�) + . . . , (2.24)

v(⌧, ✏) = ṽ(�, ✏) = ṽ0(�) + ✏ṽ1(�) + . . . . (2.25)
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Proceeding in the usual way — substituting into Equations (2.19)-(2.20) and collecting terms —

we find that ũ0, ṽ0 satisfy

dũ0
d�

= 0 =) ũ0 = constant = 1, (2.26)

and
dṽ0
d�

= ũ0 � (1 +K)ṽ0 = 1 � (1 +K)ṽ0 =) ṽ0 =
1 � e

�(1+K)�

1 +K
, (2.27)

which gives us the inner solution.

To find the outer solution, which describes how the reaction proceeds on longer time scales, we

expand in the original, non-dimensional time variable

u(⌧, ✏) = u0(⌧) + ✏u1(⌧) + . . . , (2.28)

v(⌧, ✏) = v0(⌧) + ✏v1(⌧) + . . . . (2.29)

Again, substituting into Equations (2.19)-(2.20) and collecting terms, we find that u0 and v0

satisfy

du0
d⌧

= �u0 + (u0 +K � �)v0, (2.30)

0 = u0 � (u0 +K)v0. (2.31)

This gives

v0 =
u0

u0 +K
and

du0
d⌧

= �
�u0

u0 +K
. (2.32)

In order to match the solutions as � ! 1 and ⌧ ! 0 we require

lim
�!1

ũ0 = lim
⌧!0

u0 = 1 and lim
�!1

ṽ0 = lim
⌧!0

v0 =
1

1 +K
. (2.33)

The resulting solution looks like that shown in Figure 2.2. The left-hand plot shows the solution

over long times scales, whilst the right-hand plot shows the initial, transient dynamics.

2.2.3 The pseudo steady state hypothesis

Often the initial, fast, transient is not seen or modelled: we consider only the outer equations,

with a suitably adjusted initial condition (ultimately determined from consistency/matching with

the inner solution). In particular, we often use Michaelis-Menten kinetics where the equations
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Figure 2.2: Numerical solution of the non-dimensional Michaelis-Menten equations clearly
illustrating the two di↵erent time scales on which the system evolves: at short times, v increases
rapidly while u remains approximately constant; at long times, u decreases to zero and the
dynamics of v are slave to those of u. The u dynamics are indicated by the blue line and the v

dynamics by the orange line. Parameters are ✏ = 10�5, K = 0.03 and � = 1.0.

are simply
du

dt
= �

�u

u+K
with u(0) = 1 and v =

u

u+K
. (2.34)

Definition. When the time derivative is fast, i.e. of the form

✏
dv

d⌧
= g(u, v), (2.35)

where ✏ ⌧ 1 and g(u, v) ⇠ O(1), taking the temporal dynamics to be trivial,

dv

d⌧
' 0, (2.36)

is known as the pseudo-steady state hypothesis. This is a common assumption in the

literature. We have seen its validity for enzyme kinetics, at least away from the inner region.

Note. While the Michaelis-Menten kinetics derived above are a useful approximation, they

hinge on the validity of the Law of Mass Action. Even in simple biological systems the Law of

Mass Action may break down. One (of many) reasons, and one that is potentially relevant at

the sub-cellular level, is that the system in question has too few reactant molecules to justify

the statistical mechanical assumptions underlying the Lass of Mass Action. Another reason is

that the reactants are not well-mixed, but vary spatially as well as temporally. We will see what

happens in this case later in the course.
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2.3 More complex systems

Here we consider a number of other simple systems involving enzymatic reactions. In each

case the Law of Mass Action is used to write down a system of ordinary di↵erential equations

describing the dynamics of the various reactants.

2.3.1 Allosteric enzymes

Here the binding of one substrate molecule at one site a↵ects the binding of another substrate

molecules at other sites. A typical reaction scheme is:

S + E

k1
GGGGGGBF GGGGGG

k�1

C1

k2
GGGGGGA P + E; (2.37)

S + C1

k3
GGGGGGBF GGGGGG

k�3

C2

k4
GGGGGGA C1 + P. (2.38)

2.3.2 Several enzyme reactions and the pseudo-steady state hypothesis

We can have multiple enzymes. For example, consider an enzymatic reaction in which an enzyme

can be activated or inactivated by a chemical X as follows:

E +X

k1
GGGGGGBF GGGGGG

k�1

E1, E1 +X

k2
GGGGGGGBF GGGGGGG

k�2

E2, E1 + S

k3
GGGA P +Q+ E. (2.39)

Suppose further that X is supplied at a constant rate, and removed at a rate proportional to its

concentration. As before, we can use the Law of Mass Action to write down a system of ordinary

di↵erential equations describing the evolution of the chemical concentrations.

In general, for chemical reaction networks of this type, after non-dimensionalisation the system

of ordinary di↵erential equations reduces to

du

dt
= f(u, v1, . . . , vn), (2.40)

✏i
dvi
dt

= gi(u, v1, . . . , vn), (2.41)

for i 2 {1, . . . , n}.

In this case, the pseudo-steady state hypothesis gives a single ordinary di↵erential equation

du

dt
= f(u, v1(u), . . . , vn(u)), (2.42)
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where v1(u), . . . , vn(u) are the appropriate roots of the equations

gi(u, v1, . . . , vn) = 0, i 2 {1, . . . , n}. (2.43)

Exercise (hard – use for revision).

1. Write down ordinary di↵erential equations for the evolution of the concentrations of E, E1,

E2, X and S.

2. Show that E + E1 + E2 is a conserved quantity, E⇤, say.

3. Nondimensionalise the system, scaling E, E1 and E2 with E
⇤, X and S with X0 = X(0),

and time with 1/(k1E⇤). Assuming that � = E
⇤
/X0 ⌧ 1, use the resulting ‘quasi-steady’

equations for the dimensionless quantities e, e1, and e2 to solve for these variables in terms

of x and s, and hence obtain the following system of ordinary di↵erential equations for x

and s only:

dx

d⌧
= ↵0 � ⌫4x �

3xs

µ1 + 3s+ x+ 2x
2/µ2

; (2.44)

ds

d⌧
= �

3xs

µ1 + 3s+ x+ 2x
2/µ2

. (2.45)

Identify all parameters and variables in these equations.

2.3.3 Autocatalysis and activator-inhibitor systems

Here a molecule catalyses its own production. The simplest example is the reaction scheme

A+B

k

GGGGGA 2B, (2.46)

although the positive feedback in autocatalysis is usually ameliorated by inhibition from another

molecule. This leads to an example of an activator-inhibitor system which can have a very rich

behaviour. Other examples of these systems are given below.

Example 1. This model qualitatively incorporates activation and inhibition:

du

dt
=

a

b+ v
� cu; (2.47)

dv

dt
= du � ev. (2.48)
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Example 2. This model is commonly referred to as the Gierer-Meinhardt model and was

proposed in 1972 [4]:

du

dt
= a � bu+

u
2

v
; (2.49)

dv

dt
= u

2
� v. (2.50)

Example 3. This model is commonly referred to as the Thomas model [13]. Proposed in 1975,

it is an empirical model based on a specific reaction involving uric acid and oxygen:

du

dt
= a � u � ⇢R(u, v); (2.51)

dv

dt
= ↵(b � v) � ⇢R(u, v). (2.52)

The function

R(u, v) =
uv

1 + u+Ku2
, (2.53)

represents the interactive uptake.
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