Chapter 4

Introduction to spatial variation

Both in the Part A Mathematical Modelling in Biology course, and this course so far, we have
considered biological, biochemical and ecological phenomena for which spatial effects are not
important. This is, however, often not the case. Consider a biochemical reaction as an example.
Suppose this reaction involves solutes in a relatively large, unstirred solution. Then the system
dynamics are governed not only by the rates at which the biochemicals react, but also by possible
spatial variation in solute concentrations; in such cases, diffusion of the reactants can occur.

Modelling such systems requires that we account for both reaction and diffusion.

A similar problem arises in population and ecological models when we wish to describe the
tendency of a species to spread into a region it has not previously populated. Notable examples
include ecological invasions, where one species invades another’s territory (as with grey and red
squirrels in the UK [11]), or the spread of disease. When developing mathematical descriptions
of some, though by no means all, of these ecological and disease-spread systems, the appropriate
transport mechanism is again diffusion; when modelling such systems we must include both
reaction and diffusion. In addition, motile cells can move in response to external influences,
such as chemical concentrations, light, mechanical stress and electric fields, among others. Of
particular interest is modelling when motile cells respond to gradients in chemical concentrations,

a process known as chemotazis; we will also consider this scenario.

In the following chapters, we will learn how to model such phenomena and how (when possible)
to solve and / or analyse the resulting partial differential equations, for a range of models drawn

from biology, biochemistry and ecology. Most of the partial differential equations that we will
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study can be written in the general form

rate of change net movement /flux net rate of production (4.1)
— + . .
of species of species of species

This is the Principle of Mass Balance.
4.1 Derivation of the reaction-diffusion equations

Let i € {1,...,m}. Suppose the chemical species C;, of concentration ¢;, is undergoing a reaction

such that, in the absence of diffusion, one has

dCi

ry = Ri(c1,¢2,...,cm). (4.2)

In Equation (4.2), R;(c1,ca,...,cn) is the total rate of production/destruction of C; per unit

volume, i.e. it is the rate of change of the concentration c;.

Let t denote time, and x denote the position vector of a point in space. We define

e c(x,t) to be the concentration of a chemical (typically measured in mol m=3).

e q(x,t) to be the flux of the same chemical (typically measured in mol m~2 s=1).

Now the flux of a chemical is defined such that, for a given infinitesimal

surface element, of area dS and unit normal fi, the amount of chemical n
flowing through the surface element in an infinitesimal time interval, of
duration dt, is given by
n-q dsdt. (4.3)
Definition. Fick’s Law of Diffusion relates the flux g to the gradient of ¢ via
qg=—DVc, (4.4)
where D, the diffusion coefficient, is independent of ¢ and Ve.
Using the Principle of Mass Balance, we have, for any closed volume V' (fixed
in time and space), with bounding surface 0V,
d .
— [ dV =— g-ndS+ [ Ri(ci,coy...,cn)dV, i€{l,...,m}. (4.5)
dt Jy av v
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Hence

d
/cl-dV = —/V'qdv+/Ri(Cl,CQ,...,Cm)dV (4.6)
dt Jy v 1%

= /V {V . (DZVCZ) + Ri(cl, Coy ... ,Cm)} d‘/, (47)

and thus for any closed volume, V', with surface 0V, we have

v Lot
Hence
801-

which constitutes a system of reaction-diffusion equations for the m chemical species in the finite
domain D. Such equations must be supplemented with initial and boundary conditions for each

of the m chemicals.

Warning. Given, for example, that
2m
/ cosfdd =0 #A cosf=0, 6¢€]l0,2n], (4.10)
0

are you sure one can deduce Equation (4.9)7

Suppose

880; -V (DZVCZ) - Ri 7& O, (4.11)

at some x = x*. Without loss of generality, we can assume the above expression is positive i.e.

the left-hand side of Equation (4.11) is positive. Then J¢e > 0 such that

%cti -V (DZVCZ) — Ri > O, (4.12)
for all € B(x*). In this case
aci
/ — =V (DZVCZ) —R;|dV >0, (4.13)

contradicting our original assumption, Equation (4.8). Hence our initial supposition is false and

Equation (4.9) holds for & € D.
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Remark. With one species that has a constant diffusion coefficient, in the absence of reactions,

we have the diffusion equation. In one spatial dimension this reduces to

Jc d%c

For a given length scale, L, and diffusion coefficient, D, the timescale of the system is T = L?/D.

I would not be

For a cell, L ~ 107°m = 10 3cm, and for a typical protein D ~ 10~ "cm?s™
unreasonable. Thus the timescale for diffusion to homogenise spatial gradients of a typical protein
within a cell is
L? 1076 cm?
Twiw—f\-’los, 415
D 1077 cm? 57! (4.15)

therefore we can often neglect diffusion in a cell. However, as the length scale doubles, the time

scale squares e.g. L +— L x10= T~ T x 10> and L — L x 10> = T — T x 10*.

Note. The derivation of the reaction-diffusion equations generalises to situations other than
modelling chemical or biochemical diffusion. For example, let I(x,y,t) denote the number of
infected people per unit area. Assume the infectives, on average, spread out via a random walk
and interact with susceptibles, as described by the Law of Mass Action (see Section 5.2.1). Then

the flux of infectives, q;, is given by
q;=—-D;VI, (4.16)

where D is a constant, with dimensions of (length)? (time)~!. Thus, via precisely the same

ideas and arguments as above, we have that

ol

5 =V (DIVI) +rIS —al. (4.17)

where S(z,y,t) is the number of susceptibles per unit area, and r is the rate at which susceptibles
become infected on contact with infecteds, and a is the rate at which infecteds recover from the

disease (see Section 5.2.1 for more details).

Fisher— KPP equation. A common example is the combination of logistic growth and diffusion

which, in one spatial dimension, gives rise to the Fisher— KPP equation:

D— +ru

@_ d%u (
ot Ox2

1 %) . (4.18)
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This equation was first proposed to model the spread of an advantageous gene through a

population. See Section 5.1 for more details.
4.2 Chemotaxis

As briefly mentioned earlier, motile cells can move in response to spatial gradients in chemical
concentrations, a process known as chemotaxis. This leads to slightly more complicated transport

equations, as we shall see [6].

The diffusive flux for the population density of the cells, n, is as previously: Jp = —D,,Vn. The

flux due to chemotaxis (assuming it is an attractant rather than a repellent) takes the form

Jo =nx(c)Ve=nVd(c), (4.19)

where ¢ is the chemical concentration and ®(c) increases monotonically with ¢. Clearly x(c) =
®’(c); the cells move in response to a gradient of the chemical in the direction in which the

function ®(c) is increasing at the fastest rate. Thus the total flux J is

J=Jp+Jc=-D,Vn+nx(c)Ve. (4.20)

If we assume that the behaviour of the cells is dominated by their diffusive and chemotactic
transport together with their rate of reproduction and/or death, then we can use the Principle
of Mass Balance to derive a partial differential equation that describes how their distribution
changes over time. We need an additional reaction-diffusion partial differential equation for
the evolution of chemical concentration. We assume it diffuses and, typically, is secreted and
degrades. In this way, we arrive at the following equations for the cells, n, and the cell-derived

chemical, c¢:

g:fl = V- (DaVn) = V- (nx(e)Ve) + f(n, ); (4.21)
g‘; = V-(D.-Vc)+ An — uc. (4.22)

In the above the above f(n,c) is often taken to be a logistic growth term while the function y(c)

describing chemotaxis has many forms, including

xe) = X, (4.23)

x(c) = (k::c—ioc)? (4.24)
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where the latter represents a receptor law, with ®(c) taking a Michaelis-Menten form [6].
4.3 Positional information and pattern formation

Patterns are ubiquitous in biology. Consider, for example, animal coat markings on tigers,
leopards and tropical fish. Consider, also, the well-defined pattern of bones and digits (fingers,
thumbs and toes) and teeth that appear during human development. There are two main theories

about how such patterns arise:

e Alan Turing’s concept of diffusion-driven instability which we will study in Chapter 6.

Turing’s original paper was published in 1952 [14]);

e Lewis Wolpert’s theory of positional information which is often also known as the

French Flag Model (see [17]). We will study this theory below.
4.3.1 The French Flag Model

Consider a one-dimensional chain of cells that occupies the region 0 < x < L. Suppose that
a morphogen (signalling molecule), m(x,t), enters the domain through = = 0, diffuses across
the domain (with diffusion coefficient D), and is removed at x = L. If we assume that initially
there is no morphogen in the domain, then the distribution of m(z,t) can be described by the

following equation

om 9?m
—=D— 4.2
ot 9%’ (425)
with
m(0,t) = mg, m(L,t) =0, m(x,0)=0, (4.26)

where the positive constant mg defines the morphogen concentration at x = 0.

We assume that the morphogen rapidly establishes a fixed spatial profile, mg(x), which we
determine by setting 9m/0t = 0 in Equation (4.25):

d%?mg
dz?

=0 = my(z)=myg (1 - %) . (4.27)

The French Flag Model then assumes that cells on the left (near x = 0) sense high morphogen
levels and respond in some way (e.g. they turn blue), whilst cells in the centre and on the right
sense intermediate and low levels of morphogen, respectively, and response in different ways (e.g.

they turn white and red, respectively). See Figure 4.1 for an illustration.

To determine the widths of the red, white and blue regions, we introduce the positive constants
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Figure 4.1: Schematic diagram of the French Flag Model. Cells that experience a morphogen
concentration above threshold 1 turn blue, those that experience a morphogen concentration
between threshold 1 and threshold 2 turn white, and those that experience a morphogen
concentration below threshold 2 turn red.

0 < mw < mp < mg and define the spatial locations 0 < zg < xw < L such that
ms(z =zp) =mp, ms(x=1xw)=my. (4.28)

It is straightforward to show:

width of blue region = zp = (1 - @> L; (4.29)
mo
width of white region = aw —ap= (@ - m—W) L, (4.30)
mo mo
width of red region = L —aw = (ﬂ;l_w) L. (4.31)
0

Notes.

e The sizes of the red, white and blue regions are independent of the morphogen diffusion

coefficient: do you think this is realistic?

e How do the widths of the different regions change as the domain size, L, and the right-hand
boundary concentration, mg, are varied? How do they depend on the threshold morphogen

levels mp and my/?

e More complex models for positional information can be developed, to account for e.g.
multiple morphogens, different boundary conditions and the decay of morphogens as they

diffuse across the domain.

e In other biological applications (e.g. the intestinal crypt), positional information may
determine whether cells proliferate, mature and/or die and, in this way, specify tissue size.
In Chapter 6, we will study problems of this type, where the domain size depends on the

distribution of a morphogen.
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4.4 Minimum domains for spatial structure

Finally in this chapter, we explore whether there may be constraints on the size of a domain in
terms of being able to support the growth of a population. To do so, we consider a dimensionless
model for budworm dynamics. The budworm spread by diffusion on a one-dimensional domain,
0 < x < L, and undergo logistic growth and predation by birds:

ou 0%u
o~ Por

+ f(u), where f(u)=ru <1 — Z) 1 _qug. (4.32)

We suppose that exterior to the domain conditions are extremely hostile to budworm so that we

have the boundary conditions

w(0,t) =0, u(L,t)=0. (4.33)

Clearly u = 0 is a solution of Equations (4.32)—(4.33). However, if we start with a small initial
distribution of budworm, will the budworm die out, or will there be an outbreak of budworm?

In particular, how does what happens depend on the domain size?

For initial conditions with 0 < wu(x,0) < 1, i.e. where there is initially a sufficiently small
outbreak, we can approximate f(u) by f'(0)u = ru, at least while u(z,t) remains small. Then

Equations (4.32)—(4.33) are, approximately,

ou 0%u , .
5 = D@ + f(0)u, with u(0,t) =0, wu(L,t)=0. (4.34)

We look for a solution of the form (invoking completeness of Fourier series)

u(z,t) = i an(t) sin (?) . (4.35)

This gives that the time-dependent coefficients satisfy

da Dn?n?
T; = —T(ln + f'(0)a, = onan, (4.36)

and hence

oo
Dn?r? nmwT
u(z,t) = Z an(0) exp [(f’(()) - L;T > t} sin (%) . (4.37)
n=1
For the solution to decay to zero, i.e. for the outbreak to die out, we require that all Fourier
modes decay to zero as t — co. Hence, we require that

Dn?r?

on <0 Vn = f(0) i

<0 Vn, (4.38)
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, Dn?r? D72 gef
—_— L < /—= = Luit- 4.
f'0) <= = Ls< 70) ¢ (4.39)

Hence there is a critical lengthscale, L, beyond which an outburst of budworm is possible in a

or, equivalently,

spatially distributed system.

4.4.1 Domain size

On first inspection it is perhaps surprising that Lt increases with the diffusion coefficient, i.e.
diffusion is destabilising the zero steady state. We can further investigate how the nature of a

steady state pattern depends on the diffusion coefficient.

Suppose L > L, and we shift coordinates so that uk
€ [-L/2,L/2] with
umax
u(—=L/2,t) =0, wu(L/2,t)=0, (4.40)
and that the steady state is of the form shown in the S —L/2 =0 Lj2 z
right-hand figure.
At steady state we have
0= L b (4.41)
=D— u). .
Ox?
Multiplying by du/0x and integrating with respect to x gives
ou 32 ou
0= | D— — dzx. 4.42
Thus we have
ou ,
fD e + F(u) = constant = F(umax) where F'(u)= f(u). (4.43)
x
We can therefore find a relation between L, D, integrals of
def [
Flu) = / f(y) dy, (4.44)
0

and Umax, the maximum size of the outbreak. From Equation (4.43) we have

Qu__ (;) /Flitma) — F(u), (4.45)
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Figure 4.2: Plots of f(u) and F'(u) with the three non-zero steady states indicated. Parameters
are r = 0.6, ¢ = 6.2 and D = 0.1.

since z > 0 and therefore Ou/0x < 0. Plots of f(u) and F(u) are shown in Figure 4.2.

Integrating, gives

N

L/2 0 1
2 dex = —(2D du, 4.46
/0 (2D) Umax \/F(Umax) — F(u) ( :

and hence
L Umax 1

V2D Jo \/Fltma) - F(0)

Therefore umax is a function of L/v/2D and the root of Equation (4.47), as shown in Figure 4.3.

d. (4.47)

200 .

Umax

Figure 4.3: Numerical simulation of the upax-L space, given by Equation (4.47). Parameters are
r=20.6,¢q=6.2and D =0.1.

Suggested reading.

e J. D. Murray, Mathematical Biology, Volume I — Chapter 11.

e N. F. Britton, Essential Mathematical Biology — Chapter 5.



