
Chapter 4

Introduction to spatial variation

Both in the Part A Mathematical Modelling in Biology course, and this course so far, we have

considered biological, biochemical and ecological phenomena for which spatial e↵ects are not

important. This is, however, often not the case. Consider a biochemical reaction as an example.

Suppose this reaction involves solutes in a relatively large, unstirred solution. Then the system

dynamics are governed not only by the rates at which the biochemicals react, but also by possible

spatial variation in solute concentrations; in such cases, di↵usion of the reactants can occur.

Modelling such systems requires that we account for both reaction and di↵usion.

A similar problem arises in population and ecological models when we wish to describe the

tendency of a species to spread into a region it has not previously populated. Notable examples

include ecological invasions, where one species invades another’s territory (as with grey and red

squirrels in the UK [11]), or the spread of disease. When developing mathematical descriptions

of some, though by no means all, of these ecological and disease-spread systems, the appropriate

transport mechanism is again di↵usion; when modelling such systems we must include both

reaction and di↵usion. In addition, motile cells can move in response to external influences,

such as chemical concentrations, light, mechanical stress and electric fields, among others. Of

particular interest is modelling when motile cells respond to gradients in chemical concentrations,

a process known as chemotaxis; we will also consider this scenario.

In the following chapters, we will learn how to model such phenomena and how (when possible)

to solve and / or analyse the resulting partial di↵erential equations, for a range of models drawn

from biology, biochemistry and ecology. Most of the partial di↵erential equations that we will
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study can be written in the general form

0
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1

A . (4.1)

This is the Principle of Mass Balance.

4.1 Derivation of the reaction-di↵usion equations

Let i 2 {1, . . . ,m}. Suppose the chemical species Ci, of concentration ci, is undergoing a reaction

such that, in the absence of di↵usion, one has

dci
dt

= Ri(c1, c2, . . . , cm). (4.2)

In Equation (4.2), Ri(c1, c2, . . . , cm) is the total rate of production/destruction of Ci per unit

volume, i.e. it is the rate of change of the concentration ci.

Let t denote time, and x denote the position vector of a point in space. We define

• c(x, t) to be the concentration of a chemical (typically measured in mol m�3).

• q(x, t) to be the flux of the same chemical (typically measured in mol m�2 s�1).

Now the flux of a chemical is defined such that, for a given infinitesimal

surface element, of area dS and unit normal n̂, the amount of chemical

flowing through the surface element in an infinitesimal time interval, of

duration dt, is given by

n̂ · q dSdt. (4.3)

Definition. Fick’s Law of Di↵usion relates the flux q to the gradient of c via

q = �Drc, (4.4)

where D, the di↵usion coe�cient, is independent of c and rc.

Using the Principle of Mass Balance, we have, for any closed volume V (fixed

in time and space), with bounding surface @V ,

d

dt

Z

V
ci dV = �

Z

@V
q · n dS +

Z

V
Ri(c1, c2, . . . , cm) dV, i 2 {1, . . . ,m}. (4.5)
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Hence

d

dt

Z

V
ci dV = �

Z

V
r · q dV +

Z

V
Ri(c1, c2, . . . , cm) dV (4.6)

=

Z

V
{r · (Dirci) +Ri(c1, c2, . . . , cm)} dV, (4.7)

and thus for any closed volume, V , with surface @V , we have

Z

V

⇢
@ci

@t
� r · (Dirci) � Ri

�
dV = 0, i 2 {1, . . . ,m}. (4.8)

Hence
@ci

@t
= r · (Dirci) +Ri, x 2 D, (4.9)

which constitutes a system of reaction-di↵usion equations for the m chemical species in the finite

domain D. Such equations must be supplemented with initial and boundary conditions for each

of the m chemicals.

Warning. Given, for example, that

Z 2⇡

0
cos ✓ d✓ = 0 6) cos ✓ = 0, ✓ 2 [0, 2⇡], (4.10)

are you sure one can deduce Equation (4.9)?

Suppose
@ci

@t
� r · (Dirci) � Ri 6= 0, (4.11)

at some x = x⇤. Without loss of generality, we can assume the above expression is positive i.e.

the left-hand side of Equation (4.11) is positive. Then 9 ✏ > 0 such that

@ci

@t
� r · (Dirci) � Ri > 0, (4.12)

for all x 2 B✏(x⇤). In this case

Z

B✏(x⇤)


@ci

@t
� r · (Dirci) � Ri

�
dV > 0, (4.13)

contradicting our original assumption, Equation (4.8). Hence our initial supposition is false and

Equation (4.9) holds for x 2 D.
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Remark. With one species that has a constant di↵usion coe�cient, in the absence of reactions,

we have the di↵usion equation. In one spatial dimension this reduces to

@c

@t
= D

@
2
c

@x2
. (4.14)

For a given length scale, L, and di↵usion coe�cient, D, the timescale of the system is T = L
2
/D.

For a cell, L ⇠ 10�5m = 10�3cm, and for a typical protein D ⇠ 10�7cm2s�1 would not be

unreasonable. Thus the timescale for di↵usion to homogenise spatial gradients of a typical protein

within a cell is

T ⇠
L
2

D
⇠

10�6 cm2

10�7 cm2 s�1 ⇠ 10 s, (4.15)

therefore we can often neglect di↵usion in a cell. However, as the length scale doubles, the time

scale squares e.g. L 7! L ⇥ 10 ) T 7! T ⇥ 102 and L 7! L ⇥ 102 ) T 7! T ⇥ 104.

Note. The derivation of the reaction-di↵usion equations generalises to situations other than

modelling chemical or biochemical di↵usion. For example, let I(x, y, t) denote the number of

infected people per unit area. Assume the infectives, on average, spread out via a random walk

and interact with susceptibles, as described by the Law of Mass Action (see Section 5.2.1). Then

the flux of infectives, qI , is given by

qI = �DIrI, (4.16)

where DI is a constant, with dimensions of (length)2 (time)�1. Thus, via precisely the same

ideas and arguments as above, we have that

@I

@t
= r · (DIrI) + rIS � aI, (4.17)

where S(x, y, t) is the number of susceptibles per unit area, and r is the rate at which susceptibles

become infected on contact with infecteds, and a is the rate at which infecteds recover from the

disease (see Section 5.2.1 for more details).

Fisher–KPP equation. A common example is the combination of logistic growth and di↵usion

which, in one spatial dimension, gives rise to the Fisher–KPP equation:

@u

@t
= D

@
2
u

@x2
+ ru

⇣
1 �

u

K

⌘
. (4.18)
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This equation was first proposed to model the spread of an advantageous gene through a

population. See Section 5.1 for more details.

4.2 Chemotaxis

As briefly mentioned earlier, motile cells can move in response to spatial gradients in chemical

concentrations, a process known as chemotaxis. This leads to slightly more complicated transport

equations, as we shall see [6].

The di↵usive flux for the population density of the cells, n, is as previously: JD = �Dnrn. The

flux due to chemotaxis (assuming it is an attractant rather than a repellent) takes the form

JC = n�(c)rc = nr�(c), (4.19)

where c is the chemical concentration and �(c) increases monotonically with c. Clearly �(c) =

�0(c); the cells move in response to a gradient of the chemical in the direction in which the

function �(c) is increasing at the fastest rate. Thus the total flux J is

J = JD + JC = �Dnrn+ n�(c)rc. (4.20)

If we assume that the behaviour of the cells is dominated by their di↵usive and chemotactic

transport together with their rate of reproduction and/or death, then we can use the Principle

of Mass Balance to derive a partial di↵erential equation that describes how their distribution

changes over time. We need an additional reaction-di↵usion partial di↵erential equation for

the evolution of chemical concentration. We assume it di↵uses and, typically, is secreted and

degrades. In this way, we arrive at the following equations for the cells, n, and the cell-derived

chemical, c:

@n

@t
= r · (Dnrn) � r · (n�(c)rc) + f(n, c); (4.21)

@c

@t
= r · (Dcrc) + �n � µc. (4.22)

In the above the above f(n, c) is often taken to be a logistic growth term while the function �(c)

describing chemotaxis has many forms, including

�(c) =
�0

c
, (4.23)

�(c) =
�0

(k + c)2
, (4.24)



Chapter 4 Further Mathematical Biology 32

where the latter represents a receptor law, with �(c) taking a Michaelis-Menten form [6].

4.3 Positional information and pattern formation

Patterns are ubiquitous in biology. Consider, for example, animal coat markings on tigers,

leopards and tropical fish. Consider, also, the well-defined pattern of bones and digits (fingers,

thumbs and toes) and teeth that appear during human development. There are two main theories

about how such patterns arise:

• Alan Turing’s concept of di↵usion-driven instability which we will study in Chapter 6.

Turing’s original paper was published in 1952 [14]);

• Lewis Wolpert’s theory of positional information which is often also known as the

French Flag Model (see [17]). We will study this theory below.

4.3.1 The French Flag Model

Consider a one-dimensional chain of cells that occupies the region 0  x  L. Suppose that

a morphogen (signalling molecule), m(x, t), enters the domain through x = 0, di↵uses across

the domain (with di↵usion coe�cient D), and is removed at x = L. If we assume that initially

there is no morphogen in the domain, then the distribution of m(x, t) can be described by the

following equation
@m

@t
= D

@
2
m

@x2
, (4.25)

with

m(0, t) = m0, m(L, t) = 0, m(x, 0) = 0, (4.26)

where the positive constant m0 defines the morphogen concentration at x = 0.

We assume that the morphogen rapidly establishes a fixed spatial profile, ms(x), which we

determine by setting @m/@t = 0 in Equation (4.25):

d2ms

dx2
= 0 =) ms(x) = m0

⇣
1 �

x

L

⌘
. (4.27)

The French Flag Model then assumes that cells on the left (near x = 0) sense high morphogen

levels and respond in some way (e.g. they turn blue), whilst cells in the centre and on the right

sense intermediate and low levels of morphogen, respectively, and response in di↵erent ways (e.g.

they turn white and red, respectively). See Figure 4.1 for an illustration.

To determine the widths of the red, white and blue regions, we introduce the positive constants
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Figure 4.1: Schematic diagram of the French Flag Model. Cells that experience a morphogen
concentration above threshold 1 turn blue, those that experience a morphogen concentration
between threshold 1 and threshold 2 turn white, and those that experience a morphogen
concentration below threshold 2 turn red.

0 < mW < mB < m0 and define the spatial locations 0 < xB < xW < L such that

ms(x = xB) = mB, ms(x = xW ) = mW . (4.28)

It is straightforward to show:

width of blue region = xB =

✓
1 �

mB

m0

◆
L; (4.29)

width of white region = xW � xB =

✓
mB

m0
�

mW

m0

◆
L; (4.30)

width of red region = L � xW =

✓
mW

m0

◆
L. (4.31)

Notes.

• The sizes of the red, white and blue regions are independent of the morphogen di↵usion

coe�cient: do you think this is realistic?

• How do the widths of the di↵erent regions change as the domain size, L, and the right-hand

boundary concentration, m0, are varied? How do they depend on the threshold morphogen

levels mB and mW ?

• More complex models for positional information can be developed, to account for e.g.

multiple morphogens, di↵erent boundary conditions and the decay of morphogens as they

di↵use across the domain.

• In other biological applications (e.g. the intestinal crypt), positional information may

determine whether cells proliferate, mature and/or die and, in this way, specify tissue size.

In Chapter 6, we will study problems of this type, where the domain size depends on the

distribution of a morphogen.
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4.4 Minimum domains for spatial structure

Finally in this chapter, we explore whether there may be constraints on the size of a domain in

terms of being able to support the growth of a population. To do so, we consider a dimensionless

model for budworm dynamics. The budworm spread by di↵usion on a one-dimensional domain,

0  x  L, and undergo logistic growth and predation by birds:

@u

@t
= D

@
2
u

@x2
+ f(u), where f(u) = ru

✓
1 �

u

q

◆
�

u
2

1 + u2
. (4.32)

We suppose that exterior to the domain conditions are extremely hostile to budworm so that we

have the boundary conditions

u(0, t) = 0, u(L, t) = 0. (4.33)

Clearly u = 0 is a solution of Equations (4.32)–(4.33). However, if we start with a small initial

distribution of budworm, will the budworm die out, or will there be an outbreak of budworm?

In particular, how does what happens depend on the domain size?

For initial conditions with 0  u(x, 0) ⌧ 1, i.e. where there is initially a su�ciently small

outbreak, we can approximate f(u) by f
0(0)u = ru, at least while u(x, t) remains small. Then

Equations (4.32)–(4.33) are, approximately,

@u

@t
= D

@
2
u

@x2
+ f

0(0)u, with u(0, t) = 0, u(L, t) = 0. (4.34)

We look for a solution of the form (invoking completeness of Fourier series)

u(x, t) =
1X

n=1

an(t) sin
⇣
n⇡x

L

⌘
. (4.35)

This gives that the time-dependent coe�cients satisfy

dan
dt

= �
Dn

2
⇡
2

L2
an + f

0(0)an = �nan, (4.36)

and hence

u(x, t) =
1X

n=1

an(0) exp

✓
f
0(0) �

Dn
2
⇡
2

L2

◆
t

�
sin

⇣
n⇡x

L

⌘
. (4.37)

For the solution to decay to zero, i.e. for the outbreak to die out, we require that all Fourier

modes decay to zero as t ! 1. Hence, we require that

�n < 0 8n =) f
0(0) �

Dn
2
⇡
2

L2
< 0 8n, (4.38)
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or, equivalently,

f
0(0) <

Dn
2
⇡
2

L2
=) L 

s
D⇡2

f 0(0)
def
= Lcrit. (4.39)

Hence there is a critical lengthscale, Lcrit, beyond which an outburst of budworm is possible in a

spatially distributed system.

4.4.1 Domain size

On first inspection it is perhaps surprising that Lcrit increases with the di↵usion coe�cient, i.e.

di↵usion is destabilising the zero steady state. We can further investigate how the nature of a

steady state pattern depends on the di↵usion coe�cient.

Suppose L > Lcrit, and we shift coordinates so that

x 2 [�L/2, L/2] with

u(�L/2, t) = 0, u(L/2, t) = 0, (4.40)

and that the steady state is of the form shown in the

right-hand figure.

At steady state we have

0 = D
@
2
u

@x2
+ f(u). (4.41)

Multiplying by @u/@x and integrating with respect to x gives

0 =

Z
D
@u

@x

@
2
u

@x2
dx+

Z
@u

@x
f(u) dx. (4.42)

Thus we have

1

2
D

✓
@u

@x

◆2

+ F (u) = constant = F (umax) where F
0(u) = f(u). (4.43)

We can therefore find a relation between L, D, integrals of

F (u)
def
=

Z u

0
f(y) dy, (4.44)

and umax, the maximum size of the outbreak. From Equation (4.43) we have

@u

@x
= �

✓
2

D

◆ 1
2 p

F (umax) � F (u), (4.45)
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Figure 4.2: Plots of f(u) and F (u) with the three non-zero steady states indicated. Parameters
are r = 0.6, q = 6.2 and D = 0.1.

since x > 0 and therefore @u/@x < 0. Plots of f(u) and F (u) are shown in Figure 4.2.

Integrating, gives

2

Z L/2

0
dx = �(2D)

1
2

Z 0

umax

1p
F (umax) � F (ū)

dū, (4.46)

and hence
L

p
2D

=

Z umax

0

1p
F (umax) � F (ū)

dū. (4.47)

Therefore umax is a function of L/
p
2D and the root of Equation (4.47), as shown in Figure 4.3.
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Figure 4.3: Numerical simulation of the umax-L space, given by Equation (4.47). Parameters are
r = 0.6, q = 6.2 and D = 0.1.

Suggested reading.

• J. D. Murray, Mathematical Biology, Volume I – Chapter 11.

• N. F. Britton, Essential Mathematical Biology – Chapter 5.


