Chapter 6

Pattern formation

Examples of spatial pattern and structure can be seen just about everywhere in the natural world,
and there are many outstanding questions about how these patterns are generated and maintained
in a such robust and reproducible manner. We will focus attention on a class of reaction-diffusion
models that generate patterns via what is known as a diffusion-driven instability. We will explore
how to analyse the models to determine necessary conditions for a diffusion-driven instability,

and how to predict the kinds of patterns that can form.
6.1 Diffusion-driven instability

We will consider a system that consists of two diffusible species, which diffuse and react according

to the following coupled partial differential equations

% = D,V*u+ f(u,v), (6.1)
g: = D,V + g(u,v), (6.2)

for x € Q, t € [0,00) and Q bounded. The initial conditions are

u(x,0) =ug(x), v(x,0)=uvo(x), (6.3)

and the boundary conditions are either Dirichlet, i.e.

u=up, v=uvp, €I, (6.4)
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or homogeneous Neumann, i.e.

n-Vu=0, n-Vv=0, xedi, (6.5)

where n is the outward pointing normal on 0f2.

We will be interested in analysing the pattern forming potential of this system where we define a
pattern to be a stable, time-independent, spatially heterogeneous solution of Equations (6.1)—(6.2).

In particular, we will be interested in patterns formed through a diffusion-driven instability.

Definition. A diffusion-driven instability, also referred to as a Turing instability, occurs

when a spatially uniform steady state that is stable in the absence of diffusion becomes

unstable when diffusion is present.

Note. Diffusion-driven instabilities can drive pattern formation in chemical systems and there
is significant, but not necessarily conclusive, evidence that they can drive pattern formation in
a variety of biological systems. A key point is that this mechanism can drive the system from
close to a homogeneous steady state to a state with spatial pattern and structure. The fact that
diffusion is responsible for this is initially quite surprising. Diffusion, in isolation, disperses a
pattern; yet diffusion, combined with kinetic terms, can often drive a system towards a state

with spatial structure.
6.1.1 Linear analysis

We wish to understand when a diffusion-driven instability occurs. We have

o[ u D, 0 U U, v
= = v? - flev) , (6.6)
ot \ 0 D, v g(u,v)

forx € Q, t € [0,00), with
n.Vu=0=n.Vo, x¢cd. (6.7)

Using vector and matrix notation we define

and write the problem with homogeneous Neumann boundary conditions as

88?; = DVQu + F('U/)a Tc Q? te [07 OO), (69)
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with
n-Vu=0, xe¢cdl (6.10)

Let us be a steady state of the system i.e. such that F(us) = 0. Implicit in this definition is the

assumption that ug is a constant vector.

Let w = u — us with |w| < 1. Then we have

0
87111‘,] = DV?w + F(us) + Jw + higher order terms, (6.11)
where
of of
J = ou Ov ’ (612)
99 99

8u 81} u:us
is the Jacobian of F' evaluated at the spatially uniform steady state, u = us. Note that J is a

constant matrix.

Neglecting higher order terms in |w|, we have

%::szw—i—Jw, xe and n-Vw=0, xz¢cd. (6.13)

This is a linear equation and so we look for a solution in the form of a linear sum of separable

solutions. To do this, we must first consider a general separable solution given by
w(x,t) = A(t)p(x), (6.14)

where A(t) is a scalar function of time. Substituting from Equation (6.14) into Equation (6.13)

yields

1dA
TP DV?p + Jp. (6.15)

Clearly to proceed, with p dependent on @ only, we require A/A to be time independent. It

must also be independent of & as A is a function of time only. Thus A/A is constant.

We take A = AA, where A is an, as yet, undetermined constant. Thus
A = Apexp(At), (6.16)
for Ay # 0 constant. Hence we require that our separable solution is such that

Ap—Jp—DV3p=0. (6.17)
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Suppose p satisfies the equation
Vp+kp=0, 2€Q and n-Vp=0, e, (6.18)

where k£ € R. This is motivated by the fact in one-dimensional on a bounded domain, we have
p" + k?p = 0; the solutions are trigonometric functions which means one immediately has a

Fourier series when writing the sum of separable solutions.

Then we have

(M —J+ Dk p=0, (6.19)

with |p| not identically zero. Hence, for a solution to exist we must have

det [\I — J + k*D] = 0. (6.20)
This can be rewritten as
X — fu+ Dyk? — £
det f d =0, (6.21)
—Gu A— Gv + ka2

where the partial derivatives are evaluated at the spatially uniform steady state, us. Expanding

gives the following quadratic in A
A2+ [(Dy + Dy)k* = (fu + gu)] A+ h(E*) =0, (6.22)

where

h(kQ) = Duka/A - (vau + Dugv)k2 + (fugv - gufv)- (6-23)

Note 1. Fixing model parameters and functions (i.e. fixing D,,, D,, f, g), we have an equation

which gives )\ as a function of k2.

Note 2. For any k? such that Equation (6.18) possesses a solution, denoted py(x) below, we

can find a A = A(k?) and, hence, a general separable solution of the form
AgeF)ip, (). (6.24)
The most general solution formed by the sum of separable solutions is therefore

> Aok py (), (6.25)
k2
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if there are countable k? for which Equation (6.18) possesses a solution. Otherwise the general

solution formed by the sum of separable solutions is of the form

2\ A (k2)t 2
k ) .

where k? is the integration variable.
Unstable points
If, for any k2 such that Equation (6.18) possesses a solution, we find Re(A(k?)) > 0 then:

e wu, is (linearly) unstable and perturbations from the stationary state will grow;

e while the perturbations are small, the linear analysis remains valid. The perturbations

grow until the linear analysis is invalid and the full non-linear dynamics comes into play;

e a small perturbation from the steady state develops into a growing spatially heterogeneous
solution, which subsequently seeds spatially heterogeneous behaviour of the full non-linear

model;

e a spatially heterogeneous pattern can emerge from the system from a starting point which

is homogeneous to a very good approximation.
Stable points
If, for all k% such that Equation (6.18) possesses a solution, we find Re(A(k?)) < 0 then:

e wu, is (linearly) stable and perturbations from the stationary state do not grow;
e patterning will not emerge from perturbing the homogeneous steady state solution wug;

e the solution will decay back to the homogeneous solution.

Note. Strictly, this conclusion requires completeness of the separable solutions. This can be
readily shown in one dimension on bounded domains (solutions of p” + k*p = 0 on bounded
domains with Neumann conditions are trigonometric functions and completeness is inherited
from the completeness of Fourier series). Even if completeness of the separable solutions is not
clear, numerical simulations of the full equations are highly indicative and do not, for the models
typically encountered, contradict the results of the linear analysis. With enough effort and
neglecting any biological constraints on model parameters and functions, one may well be able
to find D,, D,, f, g where there is such a discrepancy, but that is not the point of biological

modelling.
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6.2 Detailed study of the conditions for a Turing instability

For a Turing instability we require the homogeneous steady state to be stable without diffusion
and unstable with diffusion. Here we analyse the requirements for each of these conditions
to be satisfied. Note that, in the following analysis, all partial derivatives fi, fyv, gu and g, are

evaluated at the steady state, us.
6.2.1 Stability without diffusion

First, we require that in the absence of diffusion the system is stable. This is equivalent to

Re(A(0)) < 0, (6.27)

for all solutions of A\(0), as setting k? = 0 removes the diffusion terms in Equation (6.20) and

the preceding equations.

We have that \(0) satisfies

)‘(0)2 - [fu + gv} )‘(O) + [fugv - fvgu] =0, (6'28)
with roots
2 _ _
)\(O)j: _ (fu + gv) + \/(fu + gv) 4<fugv fvgu> ' (629)

Insisting that e(A(0)) < 0 gives the conditions

futgo < 0, (6.30)

fugv_fvgu > 0. (6-31)

6.2.2 Instability with diffusion

Now consider the effects of diffusion. In addition to Re(A(0)) < 0, we must show, for diffusion-

driven instability, that there exists k2 # 0 such that
Re(A(k?)) > 0, (6.32)

so that diffusion does indeed drive an instability.
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We have that \(k?) satisfies

N+ [(Du + Do)k = (fu + go)] A+ h(k*) =0, (6.33)
where
h(k2) = DukaA - (vau + Dugv)kQ + (fugv - gufv)a (6-34)
and
a=(fu+gv) — (D + Dy)k? < 0. (6.35)

Thus Re(A(k?)) > 0 requires that
Re (a +/a? = 4h(k;2)) >0 = h(k?) <. (6.36)

Hence we must find k2 such that
h(k?) = DuDuk" = (Dyfu + Dugo)k® + (fugo = guf) <0, (6.37)

so that we have k% € [k2, k%] where h(k%1) = 0. Figure 6.1 shows a plot of a caricature h(k?).
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Figure 6.1: A plot of a caricature h(k?).

We conclude that we have instability whenever

A—\A?2-B A++VA2-B

2
M e\ =%D. D, ' °D.D,

= [k2, k2], (6.38)

where

A= vau + Dygy and B = 4DuDv(fugv - gufv) > 0, (6'39)
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and there exists a solution of the following equation
Vp+k*p=0, z€Q and n-Vp=0. xecdqQ, (6.40)

for k% in the above range.

Insisting that k is real and non-zero (we have considered the k = 0 case above) we have
A>0 and A*-B>0, (6.41)
which gives us that when Re(A(k?)) > 0, the following conditions hold:

vau“‘Dugv > 0, (642)

Dy fu+ Dugy > 2\/DuDv(fugv - vaU)- (6'43)

6.2.3 Summary

We have found that diffusion-driven instability can occur when conditions stated in Equa-
tions (6.30), (6.31), (6.42) and (6.43) hold. Then the instability is driven by separable solutions
which solve Equation (6.18) with k2 in the range stated in Equation (6.38).

Key point 1. Note that the constraints in Equations (6.30) and (6.42) immediately give us
that D, # D,. Thus one cannot have a diffusion-driven instability with identical diffusion

coefficients.

Key point 2. From the constraints in Equations (6.30), (6.31) and (6.42) the signs of the

partial derivatives f,, g, must be such that J takes the form

+ + + - - - -+
J = or or or . (6.44)

- - + - + o+ -+

Key point 3. A Turing instability typically occurs via long-range inhibition and short-range

activation. In more detail, suppose

J= . (6.45)

Then we have f,, > 0 and g, < 0 by the signs of J. In this case D, f, + Dyg, > 0= D, > D,,.

Hence the activator has a lower diffusion coefficient and spreads less quickly than the inhibitor.
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6.2.4 The threshold of a Turing instability
The threshold of a Turing instability is defined such that Equation (6.23), i.e.
DukaA - (vau + Dugv)k2 + (fugv - gufv) =0,
has a single root, which we will denote k2. This requirement is satisfied when
A’ =B e (vau + DugU)Q = 4DuDv(fugv - gufv) >0, (6'46)
whereupon
A D D
k? — — vfu + U.g’l} (6_47)
2D, D, 2D, D,
Strictly one also requires that a solution exists for
Vip+k’p=0, €Q and n-Vp=0, xcoQ, (6.48)
when k% = k2. However, the above value of k? is typically an excellent approximation.
6.3 Extended example 1
Consider the one-dimensional case
Ou b2 ) (6.49)
— = — U, v .
ot Y Ox? T
ov 0%v
il Dv@ + g(u,v), (6.50)
for x € [0, L], t € [0, 00) and zero flux boundary conditions at + =0 and = = L.
The analogue of
Vp+kp=0, ze€Q and n-Vp=0, xe€ i, (6.51)
is
T 0,L) and p/(0)=p/(L)=0 6.52
L Rp=0 ze(0,0) and F0)=p(L)=0, (6:52)
which gives us that
nm
pr(x) = Ag cos (kx), k= T nE€ {1,2,...}, (6.53)
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where Ay is k-dependent in general but independent of z and ¢.

Thus the separable solution is of the form
Z A F) cog (kz), (6.54)
k
where the sum is over the allowed values of k i.e.

k= % ne{l,2,...}. (6.55)

Figure 6.2 shows example patterns formed using the Gierer-Meinhardt model [4].
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Figure 6.2: Numerical simulation of the Gierer-Meinhardt model for pattern formation.

6.3.1 The influence of domain size

If the smallest allowed value of k? = 72/L? is such that

2 A+AZ-B
=T S ATVA D s (6.56)
L? 2D, D,

then we cannot have a Turing instability.

Thus for very small domains there is no pattern formation via a Turing mechanism. However, if
one slowly increases the size of the domain, then L increases and the above constraint eventually
breaks down and the homogeneous steady state destabilises leading to spatial heterogeneity. This
phenomenon has been observed in chemical systems. It is regularly hypothesised to be present in
biological systems (e.g. animal coat markings, fish markings, the interaction of gene products at
a cellular level, the formation of ecological patchiness) though the evidence is not conclusive at

the current time.
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6.4 Extended example 2

Consider the two-dimensional case with spatial coordinates x = (z,y)T, x € [0, L,], y € [0, L],

and zero flux boundary conditions. We find that the allowed values of k% are

2 —[m%z ”2”2}, (6.57)

mre | L2 L2

with

ML
Pmn(x) = Ap pn cOS ( T

xT

) coS <w> , n,me{0,1,2,...}, (6.58)
Ly

excluding the case where n, m are both zero.

Suppose the domain is long and thin, L, < L,. We may have a Turing instability if

9 [m27r2 n2m?

mn 12 + 12
x )

] € [k%, k%]  where h(k3) = 0. (6.59)

For L, sufficiently small, this requires n = 0 and therefore no spatial variation in the y direction.
This means that the seed for pattern formation predicted by the linear analysis is a separable
solution which is “stripes”; this typically invokes a striped pattern once the non-linear dynamics

sets in.

On the other hand, for a large rectangular domain, L, ~ L, sufficiently large, it is clear that a
Turing instability can be initiated with n, m > 0. This means that the seed for pattern formation
predicted by the linear analysis is a separable solution which is “spots”. This typically invokes a

spotted pattern once the non-linear dynamics sets in.

0 2 4 6 8 0 2 4 6 8 10
Figure 6.3: Changes in patterning as the domain shape changes.

Figure 6.3 shows how domain size may affect the patterns formed. On the left-hand side the
domain is long and thin and only a striped pattern results, whilst the on the right-hand side the

domain is large enough to admit patterning in both directions.
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Suppose we have a domain which changes its aspect ratio from long and wide to long and thin.

Then we have the following possibilities:

This leads to an interesting prediction, in the context of animal coat markings, that if patterning
is indeed driven by a diffusion-driven instability, then one should not expect to see an animal

with a striped body and a spotted tail.

Figure 6.4: Animal coat markings which are consistent with the predictions of pattern formation
by a Turing instability.

Common observation is consistent with such a prediction (see Figure 6.4) but one should not
expect universal laws in the realms of biology as one does in physics (see Figure 6.5). More
generally, this analysis has applications in modelling numerous chemical and biochemical reactions,

in vibrating plate theory, and studies of patchiness in ecology and modelling gene interactions.

Figure 6.5: Animal coat markings which are inconsistent with the predictions of pattern formation
by a Turing instability.

Suggested reading.

e J. D. Murray, Mathematical Biology, Volume Il — Chapters 2 and 3.

e N. F. Britton, Essential Mathematical Biology — Chapter 7.



