
Chapter 6

Pattern formation

Examples of spatial pattern and structure can be seen just about everywhere in the natural world,

and there are many outstanding questions about how these patterns are generated and maintained

in a such robust and reproducible manner. We will focus attention on a class of reaction-di↵usion

models that generate patterns via what is known as a di↵usion-driven instability. We will explore

how to analyse the models to determine necessary conditions for a di↵usion-driven instability,

and how to predict the kinds of patterns that can form.

6.1 Di↵usion-driven instability

We will consider a system that consists of two di↵usible species, which di↵use and react according

to the following coupled partial di↵erential equations

@u

@t
= Dur

2
u+ f(u, v), (6.1)

@v

@t
= Dvr

2
v + g(u, v), (6.2)

for x 2 ⌦, t 2 [0,1) and ⌦ bounded. The initial conditions are

u(x, 0) = u0(x), v(x, 0) = v0(x), (6.3)

and the boundary conditions are either Dirichlet, i.e.

u = uB, v = vB, x 2 @⌦, (6.4)
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or homogeneous Neumann, i.e.

n · ru = 0, n · rv = 0, x 2 @⌦, (6.5)

where n is the outward pointing normal on @⌦.

We will be interested in analysing the pattern forming potential of this system where we define a

pattern to be a stable, time-independent, spatially heterogeneous solution of Equations (6.1)–(6.2).

In particular, we will be interested in patterns formed through a di↵usion-driven instability.

Definition. A di↵usion-driven instability, also referred to as a Turing instability, occurs

when a spatially uniform steady state that is stable in the absence of di↵usion becomes

unstable when di↵usion is present.

Note. Di↵usion-driven instabilities can drive pattern formation in chemical systems and there

is significant, but not necessarily conclusive, evidence that they can drive pattern formation in

a variety of biological systems. A key point is that this mechanism can drive the system from

close to a homogeneous steady state to a state with spatial pattern and structure. The fact that

di↵usion is responsible for this is initially quite surprising. Di↵usion, in isolation, disperses a

pattern; yet di↵usion, combined with kinetic terms, can often drive a system towards a state

with spatial structure.

6.1.1 Linear analysis

We wish to understand when a di↵usion-driven instability occurs. We have
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for x 2 ⌦, t 2 [0,1), with

n.ru = 0 = n.rv, x 2 @⌦. (6.7)

Using vector and matrix notation we define

u =

0

@ u
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0 Dv

1

A , (6.8)

and write the problem with homogeneous Neumann boundary conditions as

@u

@t
= Dr

2u+ F (u), x 2 ⌦, t 2 [0,1), (6.9)
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with

n · ru = 0, x 2 @⌦. (6.10)

Let us be a steady state of the system i.e. such that F (us) = 0. Implicit in this definition is the

assumption that us is a constant vector.

Let w = u � us with |w| ⌧ 1. Then we have

@w

@t
= Dr

2w + F (us) + Jw + higher order terms, (6.11)

where
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0
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, (6.12)

is the Jacobian of F evaluated at the spatially uniform steady state, u = us. Note that J is a

constant matrix.

Neglecting higher order terms in |w|, we have

@w

@t
= Dr

2w + Jw, x 2 ⌦ and n · rw = 0, x 2 @⌦. (6.13)

This is a linear equation and so we look for a solution in the form of a linear sum of separable

solutions. To do this, we must first consider a general separable solution given by

w(x, t) = A(t)p(x), (6.14)

where A(t) is a scalar function of time. Substituting from Equation (6.14) into Equation (6.13)

yields
1

A

dA

dt
p = Dr

2p+ Jp. (6.15)

Clearly to proceed, with p dependent on x only, we require Ȧ/A to be time independent. It

must also be independent of x as A is a function of time only. Thus Ȧ/A is constant.

We take Ȧ = �A, where � is an, as yet, undetermined constant. Thus

A = A0 exp(�t), (6.16)

for A0 6= 0 constant. Hence we require that our separable solution is such that

�p � Jp � Dr
2p = 0. (6.17)
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Suppose p satisfies the equation

r
2p+ k

2p = 0, x 2 ⌦ and n · rp = 0, x 2 @⌦, (6.18)

where k 2 R. This is motivated by the fact in one-dimensional on a bounded domain, we have

p
00 + k

2
p = 0; the solutions are trigonometric functions which means one immediately has a

Fourier series when writing the sum of separable solutions.

Then we have
⇥
�I � J +Dk

2
⇤
p = 0, (6.19)

with |p| not identically zero. Hence, for a solution to exist we must have

det
⇥
�I � J + k

2D
⇤
= 0. (6.20)

This can be rewritten as

det

0

@ � � fu +Duk
2

�fv

�gu � � gv +Dvk
2

1

A = 0, (6.21)

where the partial derivatives are evaluated at the spatially uniform steady state, us. Expanding

gives the following quadratic in �

�
2 +

⇥
(Du +Dv)k

2
� (fu + gv)

⇤
�+ h(k2) = 0, (6.22)

where

h(k2) = DuDvk
4
� (Dvfu +Dugv)k

2 + (fugv � gufv). (6.23)

Note 1. Fixing model parameters and functions (i.e. fixing Du, Dv, f , g), we have an equation

which gives � as a function of k2.

Note 2. For any k
2 such that Equation (6.18) possesses a solution, denoted pk(x) below, we

can find a � = �(k2) and, hence, a general separable solution of the form

A0e
�(k2)tpk(x). (6.24)

The most general solution formed by the sum of separable solutions is therefore

X

k2

A0(k
2)e�(k

2)tpk(x), (6.25)
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if there are countable k
2 for which Equation (6.18) possesses a solution. Otherwise the general

solution formed by the sum of separable solutions is of the form

Z
A0(k

2)e�(k
2)tpk2(x) dk

2
, (6.26)

where k
2 is the integration variable.

Unstable points

If, for any k
2 such that Equation (6.18) possesses a solution, we find <e(�(k2)) > 0 then:

• us is (linearly) unstable and perturbations from the stationary state will grow;

• while the perturbations are small, the linear analysis remains valid. The perturbations

grow until the linear analysis is invalid and the full non-linear dynamics comes into play;

• a small perturbation from the steady state develops into a growing spatially heterogeneous

solution, which subsequently seeds spatially heterogeneous behaviour of the full non-linear

model;

• a spatially heterogeneous pattern can emerge from the system from a starting point which

is homogeneous to a very good approximation.

Stable points

If, for all k2 such that Equation (6.18) possesses a solution, we find <e(�(k2)) < 0 then:

• us is (linearly) stable and perturbations from the stationary state do not grow;

• patterning will not emerge from perturbing the homogeneous steady state solution us;

• the solution will decay back to the homogeneous solution.

Note. Strictly, this conclusion requires completeness of the separable solutions. This can be

readily shown in one dimension on bounded domains (solutions of p00 + k
2
p = 0 on bounded

domains with Neumann conditions are trigonometric functions and completeness is inherited

from the completeness of Fourier series). Even if completeness of the separable solutions is not

clear, numerical simulations of the full equations are highly indicative and do not, for the models

typically encountered, contradict the results of the linear analysis. With enough e↵ort and

neglecting any biological constraints on model parameters and functions, one may well be able

to find Du, Dv, f, g where there is such a discrepancy, but that is not the point of biological

modelling.
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6.2 Detailed study of the conditions for a Turing instability

For a Turing instability we require the homogeneous steady state to be stable without di↵usion

and unstable with di↵usion. Here we analyse the requirements for each of these conditions

to be satisfied. Note that, in the following analysis, all partial derivatives fu, fv, gu and gv are

evaluated at the steady state, us.

6.2.1 Stability without di↵usion

First, we require that in the absence of di↵usion the system is stable. This is equivalent to

<e(�(0)) < 0, (6.27)

for all solutions of �(0), as setting k
2 = 0 removes the di↵usion terms in Equation (6.20) and

the preceding equations.

We have that �(0) satisfies

�(0)2 � [fu + gv]�(0) + [fugv � fvgu] = 0, (6.28)

with roots

�(0)± =
(fu + gv) ±

p
(fu + gv)2 � 4(fugv � fvgu)

2
. (6.29)

Insisting that <e(�(0)) < 0 gives the conditions

fu + gv < 0, (6.30)

fugv � fvgu > 0. (6.31)

6.2.2 Instability with di↵usion

Now consider the e↵ects of di↵usion. In addition to <e(�(0)) < 0, we must show, for di↵usion-

driven instability, that there exists k2 6= 0 such that

<e(�(k2)) > 0, (6.32)

so that di↵usion does indeed drive an instability.
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We have that �(k2) satisfies

�
2 +

⇥
(Du +Dv)k

2
� (fu + gv)

⇤
�+ h(k2) = 0, (6.33)

where

h(k2) = DuDvk
4
� (Dvfu +Dugv)k

2 + (fugv � gufv), (6.34)

and

↵ = (fu + gv) � (Du +Dv)k
2
< 0. (6.35)

Thus <e(�(k2)) > 0 requires that

<e

⇣
↵ ±

p
↵2 � 4h(k2)

⌘
> 0 =) h(k2) < 0. (6.36)

Hence we must find k
2 such that

h(k2) = DuDvk
4
� (Dvfu +Dugv)k

2 + (fugv � gufv) < 0, (6.37)

so that we have k
2

2 [k2�, k
2
+] where h(k2±) = 0. Figure 6.1 shows a plot of a caricature h(k2).
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Figure 6.1: A plot of a caricature h(k2).

We conclude that we have instability whenever

k
2

2

"
A �

p
A2 � B

2DuDv
,
A+

p
A2 � B

2DuDv

#
=

⇥
k
2
�, k

2
+

⇤
, (6.38)

where

A = Dvfu +Dugv and B = 4DuDv(fugv � gufv) > 0, (6.39)
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and there exists a solution of the following equation

r
2p+ k

2p = 0, x 2 ⌦ and n · rp = 0. x 2 @⌦, (6.40)

for k2 in the above range.

Insisting that k is real and non-zero (we have considered the k = 0 case above) we have

A > 0 and A
2
� B > 0, (6.41)

which gives us that when <e(�(k2)) > 0, the following conditions hold:

Dvfu +Dugv > 0, (6.42)

Dvfu +Dugv > 2
p
DuDv(fugv � fvgu). (6.43)

6.2.3 Summary

We have found that di↵usion-driven instability can occur when conditions stated in Equa-

tions (6.30), (6.31), (6.42) and (6.43) hold. Then the instability is driven by separable solutions

which solve Equation (6.18) with k
2 in the range stated in Equation (6.38).

Key point 1. Note that the constraints in Equations (6.30) and (6.42) immediately give us

that Du 6= Dv. Thus one cannot have a di↵usion-driven instability with identical di↵usion

coe�cients.

Key point 2. From the constraints in Equations (6.30), (6.31) and (6.42) the signs of the

partial derivatives fu, gv must be such that J takes the form

J =

0

@ + +

� �

1

A or

0

@ + �

+ �

1

A or

0

@ � �

+ +

1

A or

0

@ � +

� +

1

A . (6.44)

Key point 3. A Turing instability typically occurs via long-range inhibition and short-range

activation. In more detail, suppose

J =

0

@ + �

+ �

1

A . (6.45)

Then we have fu > 0 and gv < 0 by the signs of J . In this case Dvfu +Dugv > 0 =) Dv > Du.

Hence the activator has a lower di↵usion coe�cient and spreads less quickly than the inhibitor.
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6.2.4 The threshold of a Turing instability

The threshold of a Turing instability is defined such that Equation (6.23), i.e.

DuDvk
4
� (Dvfu +Dugv)k

2 + (fugv � gufv) = 0,

has a single root, which we will denote k
2
c . This requirement is satisfied when

A
2 = B i.e. (Dvfu +Dugv)

2 = 4DuDv(fugv � gufv) > 0, (6.46)

whereupon

k
2
c =

A

2DuDv
=

Dvfu +Dugv

2DuDv
. (6.47)

Strictly one also requires that a solution exists for

r
2p+ k

2p = 0, x 2 ⌦ and n · rp = 0, x 2 @⌦, (6.48)

when k
2 = k

2
c . However, the above value of k2c is typically an excellent approximation.

6.3 Extended example 1

Consider the one-dimensional case

@u

@t
= Du

@
2
u

@x2
+ f(u, v), (6.49)

@v

@t
= Dv

@
2
v

@x2
+ g(u, v), (6.50)

for x 2 [0, L], t 2 [0,1) and zero flux boundary conditions at x = 0 and x = L.

The analogue of

r
2p+ k

2p = 0, x 2 ⌦ and n · rp = 0, x 2 @⌦, (6.51)

is
d2p

dx2
+ k

2
p = 0, x 2 (0, L) and p

0(0) = p
0(L) = 0, (6.52)

which gives us that

pk(x) = Ak cos (kx) , k =
n⇡

L
, n 2 {1, 2, . . .}, (6.53)
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where Ak is k-dependent in general but independent of x and t.

Thus the separable solution is of the form

X

k

Ake
�(k2)t cos (kx) , (6.54)

where the sum is over the allowed values of k i.e.

k =
n⇡

L
, n 2 {1, 2, . . .}. (6.55)

Figure 6.2 shows example patterns formed using the Gierer-Meinhardt model [4].
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Figure 6.2: Numerical simulation of the Gierer-Meinhardt model for pattern formation.

6.3.1 The influence of domain size

If the smallest allowed value of k2 = ⇡
2
/L

2 is such that

k
2 =

⇡
2

L2
>

A+
p
A2 � B

2DuDv
= k

2
+, (6.56)

then we cannot have a Turing instability.

Thus for very small domains there is no pattern formation via a Turing mechanism. However, if

one slowly increases the size of the domain, then L increases and the above constraint eventually

breaks down and the homogeneous steady state destabilises leading to spatial heterogeneity. This

phenomenon has been observed in chemical systems. It is regularly hypothesised to be present in

biological systems (e.g. animal coat markings, fish markings, the interaction of gene products at

a cellular level, the formation of ecological patchiness) though the evidence is not conclusive at

the current time.
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6.4 Extended example 2

Consider the two-dimensional case with spatial coordinates x = (x, y)T , x 2 [0, Lx], y 2 [0, Ly],

and zero flux boundary conditions. We find that the allowed values of k2 are

k
2
m,n =


m

2
⇡
2

L2
x

+
n
2
⇡
2

L2
y

�
, (6.57)

with

pm,n(x) = Am,n cos

✓
m⇡x

Lx

◆
cos

✓
n⇡y

Ly

◆
, n,m 2 {0, 1, 2, . . .}, (6.58)

excluding the case where n, m are both zero.

Suppose the domain is long and thin, Ly ⌧ Lx. We may have a Turing instability if

k
2
m,n =


m

2
⇡
2

L2
x

+
n
2
⇡
2

L2
y

�
2
⇥
k
2
�, k

2
+

⇤
where h(k2±) = 0. (6.59)

For Ly su�ciently small, this requires n = 0 and therefore no spatial variation in the y direction.

This means that the seed for pattern formation predicted by the linear analysis is a separable

solution which is “stripes”; this typically invokes a striped pattern once the non-linear dynamics

sets in.

On the other hand, for a large rectangular domain, Lx ⇠ Ly su�ciently large, it is clear that a

Turing instability can be initiated with n, m > 0. This means that the seed for pattern formation

predicted by the linear analysis is a separable solution which is “spots”. This typically invokes a

spotted pattern once the non-linear dynamics sets in.
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Figure 6.3: Changes in patterning as the domain shape changes.

Figure 6.3 shows how domain size may a↵ect the patterns formed. On the left-hand side the

domain is long and thin and only a striped pattern results, whilst the on the right-hand side the

domain is large enough to admit patterning in both directions.
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Suppose we have a domain which changes its aspect ratio from long and wide to long and thin.

Then we have the following possibilities:

This leads to an interesting prediction, in the context of animal coat markings, that if patterning

is indeed driven by a di↵usion-driven instability, then one should not expect to see an animal

with a striped body and a spotted tail.

Figure 6.4: Animal coat markings which are consistent with the predictions of pattern formation
by a Turing instability.

Common observation is consistent with such a prediction (see Figure 6.4) but one should not

expect universal laws in the realms of biology as one does in physics (see Figure 6.5). More

generally, this analysis has applications in modelling numerous chemical and biochemical reactions,

in vibrating plate theory, and studies of patchiness in ecology and modelling gene interactions.

Figure 6.5: Animal coat markings which are inconsistent with the predictions of pattern formation
by a Turing instability.

Suggested reading.
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