
Chapter 8

From discrete to continuum models

The di↵erential equation models we have studied thus far typically view species as densities or

concentrations that vary continuously with time and position (see Figure 8.1). We have mostly

used phenomenological descriptions of e.g. rates and forms of growth, reactions / interactions

and movement to model how population density or concentration evolves in time. However, it is

very di�cult to relate these phenomenological “population-level” functions to the behaviour of

individuals – for example, cells, animals, people, and even molecules – within the population. In

fact, in writing down a model one should ideally start with a hypothesis of how the individuals

behave and use mathematical techniques (e.g. coarse graining) to derive how these behaviours

manifest at the population level. This question of how to derive di↵erential equation models from

individual-level descriptions of behaviours is the subject of this chapter. Some of the approaches

that we will use to derive continuum descriptions for the case studies are explored in more detail

in the Part B course Stochastic modelling of biological systems.

single
molecule

protein
interactions

signalling/metabolic
networks

intracellular
distributions

single
cells

cell-cell
communication tissues organs organisms populations

10 -10 m 10 -6 m 10 -5 m 10 -2 m 10 0 m 10 4 m

molecular
dynamics

single
molecule PDEs potts

models
agent-based
cell models

cellular
automataODEs PDEs and ODEs

10 -6 s 10 -3 s 10 0 s 10 1 s 10 3 s 10 9 s

areas that my work has spanned

Figure 8.1: An illustration of the di↵erent spatial and temporal scales in biology.
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8.1 Individual-based models for population growth

First, we will think about models for population growth, and show how to derive some of the

population-level growth models that you might have seen in the Part A “Mathematical modelling

in biology” course.

8.1.1 An exponential growth model

We will use the notation pn(t) to denote the probability that there are n individuals at time t,

given N0 individuals at time zero. We will assume that individuals proliferate (i.e. produce a

daughter individual) at constant rate b, so that over a time interval of length dt, the probability

that an agent proliferates is bdt + O(dt
2). Then we can write the following discrete conservation

equations

pn(t + dt) = (n � 1)bdt pn�1(t) + (1 � nbdt) pn(t), n = N0 + 1, N0 + 2, . . . , (8.1)

and

pN0(t + dt) = (1 � N0bdt) pN0(t), (8.2)

Rearranging and dividing by dt gives

pn(t + dt) � pn(t)

dt
= (n � 1)b pn�1(t) + nb pn(t), n = N0 + 1, N0 + 2, . . . , (8.3)

and
pN0(t + dt) � pN0(t)

dt
= N0b pN0(t), (8.4)

Taking the limit as dt ! 0 gives

dpn(t)

dt
= (n � 1)b pn�1(t) + nb pn(t), n = N0 + 1, N0 + 2, . . . , (8.5)

and
dpN0(t)

dt
= �N0b pN0(t), (8.6)

with initial conditions

pn(0) =

8
<

:
1 for n = N0,

0 for n 6= N0.

(8.7)

Note that we often call Equations (8.5)-(8.6) together the “master equation” — it is a continuous

di↵erential equation in time, t, but a discrete di↵erence equation in n.
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There are a number of ways we can use Equations (8.5)-(8.7) to gain insight into the dynamics

of the system. We will briefly outline some of them below.

Evolution of the moments

To examine the mean behaviour of the system, we multiply Equations (8.5)-(8.6) by n and sum:

d

dt

1X

n=0

npn(t) = b

1X

n=0

n(n � 1)pn�1(t) � b

1X

n=0

n
2
pn(t), (8.8)

= b

1X

n=0

n(n + 1)pn(t) � b

1X

n=0

n
2
pn(t), (8.9)

= b

1X

n=0

npn(t), (8.10)

where we have used pn(t) = 0 for n < N0, and shifted indices on the second line. Denote the

mean agent number, hn(t)i =
P1

n=0 npn(t), as M(t) we have

dM

dt
= bM(t) =) M(t) = N0e

bt
, (8.11)

i.e. the population grows exponentially at rate b.

To evaluate the variance, we first derive an expression for the rate of change of hn
2(t)i =

P1
n=0 n

2
pn(t):

d

dt

1X

n=0

n
2
pn(t) = b

1X

n=0

n
2(n � 1)pn�1(t) � b

1X

n=0

n
3
pn(t), (8.12)

= b

1X

n=0

n(n + 1)2pn(t) � b

1X

n=0

n
p
n(t), (8.13)

= b

1X

n=0

(2n
2 + n)pn(t). (8.14)

Using the fact that V (t) = hn
2(t)i � M(t)2, we have

d

dt
V (t) = 2bV + bM =) V (t) = N0

⇣
e
bt

� 1
⌘

e
bt
. (8.15)

Note. The expression for the mean population growth, Equation (8.11), is the consistent with

the continuum model we would have assumed from writing population growth as the “reaction”

A ! 2A and using the Law of Mass Action. However, in general this will not be the case, as

subsequent examples will show, and we will need to use some approximations to write down

closed form equations for evolution of the mean number of individuals over time.
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Generating functions

Another means to explore these types of models is the use of generating functions. We define the

probability generating function G : [�1, 1] ⇥ [0, 1) ! R by

G(s, t) =
1X

n=0

pn(t)sn.

Recall that we can recover a number of useful statistics about the pn(t) by evaluating the

generating function in di↵erent ways. For example, the coe�cient of s
n is pn(t) and

M(t) =
@G

@s
(1, t), (8.16)

V (t) =
@
2
G

@s2
(1, t) + M(t) � M

2(t). (8.17)

To make progress, we multiply Equations (8.5)-(8.6) by s
n, sum over n and shift indices to give

a partial di↵erential equation for G(s, t):

@G

@t
=

@

@t

1X

n=0

pn(t)sn

= b

" 1X

n=0

(n � 1)pn�1(t)s
n

�

1X

n=0

npn(t)sn
#

= b

" 1X

n=0

npn(t)sn+1
�

1X

n=0

npn(t)sn
#

= b

"
s
2

1X

n=0

npn(t)zn�1
� s

1X

n=0

npn(t)sn�1

#

= bs(s � 1)
@G

@s
. (8.18)

We then need to solve

@G

@t
= bs(s � 1)

@G

@s
with G(s, 0) = s

N0 . (8.19)

The characteristic equations are

dt

d⌧
= 1,

ds

d⌧
= �bs(s � 1),

dG

d⌧
= 0, (8.20)

with

t(z, 0) = 0, s(z, 0) = z, G(z, 0) = z
N0 , |z|  1. (8.21)
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We can integrate the first and third of these to give

t(z, ⌧) = ⌧ and G(z, ⌧) = z
N0 . (8.22)

We can use partial fractions to integrate the second: we have

�b⌧ + B(z) =

Z ✓
1

s � 1
�

1

s

◆
ds = ln

✓
s � 1

s

◆
, (8.23)

where

B(s) = ln

✓
s � 1

s

◆
. (8.24)

This gives

s =
z

z � (z � 1)eb⌧
, (8.25)

and hence

G(s, t) =

✓
s

s � (s � 1)ebt

◆N0

=

✓
se

�bt

1 � (1 � e�bt)s

◆N0

. (8.26)

Note that this formulation reveals that G(s, t) is the probability generating function of a negative

binomial distribution i.e. that the pn(t) are negative-binomial distributed, pn(t) ⇠ NB(N, p)

with parameters p = e
�bt and N = N0.

The mean is given by

M(t) =
@G

@s

����
s=1

= N0e
bt
, (8.27)

and the variance is

V (t) =
@
2
G

@s2

����
s=1

+
@G

@s

����
s=1

�

✓
@G

@s

����
s=1

◆2

= N0

⇣
e
bt

� 1
⌘

e
bt
. (8.28)

More generally, we can evaluate pn(t) (for any n) via di↵erentiation of the result in Equation (8.26).

8.1.2 Models for stochastic logistic growth

We will now consider a population of individuals for which, when there are n individuals in

the population, the probability a single individual is born over a time interval of length dt is

�ndt + O(dt
2), and the probability that a single individual dies over a time interval of length dt

is µndt + O(dt
2). We further assume that the probability that more than one individual is born

or dies is O(dt
2), and that there are initially N0 individuals in the population.
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Then we can write the following discrete conservation equations

pn(t+dt) = �n�1dt pn�1(t)+(1 � �ndt � µndt) pn(t)+µn+1dt pn+1(t), n = 0, 1, 2, . . . , (8.29)

with

p�1(t) ⌘ 0. (8.30)

Note that from a biological perspective it is sensible to assume that µ0 = 0 so that there are no

deaths when the population contains zero individuals.

Rearranging, dividing by dt and taking the limit as dt ! 0 gives

dpn(t)

dt
= �n�1pn�1(t) � (�n + µn)pn(t) + µn+1pn+1(t), n = 0, 1, 2, . . . , (8.31)

with

p�1(t) ⌘ 0, (8.32)

and initial conditions

pn(0) =

8
<

:
1 for n = N0,

0 for n 6= N0.

(8.33)

Evolution of the mean number of individuals

To examine the mean behaviour of the system, we multiply Equations (8.31) by n and sum:

d

dt

1X

n=0

npn(t) =
1X

n=0

n�n�1pn�1(t) �

1X

n=0

n(�n + µn)pn(t) +
1X

n=0

nµn+1pn+1(t),

=
1X

n=0

(n + 1)�npn(t) �

1X

n=0

n(�n + µn)pn(t) +
1X

n=0

(n � 1)µnpn(t), (8.34)

=
1X

n=0

�npn(t) �

1X

n=0

µnpn(t). (8.35)

We now make the assumption that

�n =

8
<

:
b1n + b2n

2 for n > 0,

0 for n = 0,

and µn =

8
<

:
d1n + d2n

2 for n > 0,

0 for n = 0,

(8.36)

where b1, b2, d1 and d2 are non-negative constants. In this case, we have

dM

dt
= (b1 � d1)M + (b2 � d2)hn

2
i, (8.37)
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where the second moment is defined as

hn
2
i =

1X

n=0

n
2
pn(t). (8.38)

Note that the presence of the hn
2
i term means that Equation (8.37) is not closed so we cannot

immediately solve it to provide insight into how the mean number of individuals evolves over

time. In order to make progress, we invoke a commonly used mean-field assumption of the form

hn
2
i ⇡ M

2 to write

dM

dt
= (b1 � d1)M + (b2 � d2)M

2 = rM

✓
1 �

M

K

◆
, (8.39)

where

r = b1 � d1 and K =
b1 � d1

d2 � b2
. (8.40)

Hence, the mean number of individuals approximately evolves according to the logistic equation,

and we can solve explicitly to find M(t). However, note that there are four constants in the

individual-level model, but only two in the deterministic model. Comparing the coe�cients, we

see that there are an infinite number of stochastic models that all give rise, approximately, to

the same average behaviour.

Evolution of the second moment

Instead of closing at first order using the mean-field assumption, we can derive an expression for

how the second moment evolves over time:

d

dt
hn

2
i =

d

dt

1X

n=0

n
2
pn(t)

=
1X

n=0

n
2
�n�1pn�1(t) �

1X

n=0

n
2(�n + µn)pn(t) +

1X

n=0

n
2
µn+1pn+1(t) (8.41)

=
1X

n=0

(n + 1)2�npn(t) �

1X

n=0

n
2(�n + µn)pn(t) +

1X

n=0

(n � 1)2µnpn(t)

=
1X

n=0

(2n + 1)�npn(t) �

1X

n=0

(2n � 1)µnpn(t). (8.42)

For the specific choices of �n and µn we made above, we have

d

dt
hn

2
i = (b1 + d1)M + {2(b1 � d1) + (b2 + d2)} hn

2
i + 2(b2 � d2)hn

3
i. (8.43)
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We make two observations. First, there are distinct four parameter combinations in Equa-

tion (8.43): b1 � d1, b1 + d1, b2 � d2 and b2 + d2. This means that we could potentially use the

variability in population numbers to di↵erentiate between models that display the same averaged

behaviour. Second, the variance increases as b1 + d1 and b2 + d2 are increased.

Finally, we remark that Equation (8.43) is, similarly to the equation for M(t), not closed. To find

an approximate solution we would need to make a further closure assumption to write hn
3
i in

terms of M and hn
2
i. This need for moment closure approximations in order to find closed form

expressions for the mean and variance of the number of individuals arises whenever �n and/or

µn are quadratic or higher order polynomials in n. The most appropriate closure assumption, for

a general scenario, is still an open question.

8.2 Individual-based models for cell motility

In this section we will write down some simple models for the behaviour of motile cell populations,

and learn how to coarse grain them to derive corresponding partial di↵erential equation models

for the evolution of cell density. For simplicity, we will assume that each cell undergoes a random

walk on a lattice in one spatial dimension. However it is simple to extend all these models to

two and three spatial dimensions.

8.2.1 A simple model of biased cell motility

We first consider single cell undergoing a random walk on one-dimensional lattice along the

x-axis, where the lattice sites are all of width dx (see Figure 8.3). We let pn(t) now be the

probability that the cell is in lattice site n at time t, with pn(0) = p
0
n i.e. the probability that

the particle is initially at site n is p
0
n for n 2 Z.
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dx

Figure 8.2: Illustration of the biased random walk in one dimension.

We assume that over a time step of length dt, the cell moves one lattice site to the right with

constant probability Pm(1 + ⇢)dt/2, or one lattice site to the left with constant probability

Pm(1 � ⇢)dt/2 (see Figure 8.3). Note that this equates to an overall movement rate of Pm (and

probability of movement Pmdt), with movements biased in the right-hand direction for ⇢ > 0.
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We can write down a discrete conservation equation for the position of the cell at time t + dt:

pn(t + dt) =
1

2
(1 + ⇢)Pmdt pn�1(t) � (1 � Pmdt) pn(t) +

1

2
(1 � ⇢)Pmdt pn+1(t). (8.44)

If the size of the lattice is su�ciently small we can relate pn(t) to a continuous probability p(x, t)

by writing pn(t) = p(ndx, t), and then rearrange Equation (8.44) to give

p(ndx, t + dt) � p(ndx, t)

dt
=

1

2
(1+⇢)Pm p((n�1)dx, t)�Pmp(ndx, t)+

1

2
(1�⇢)Pm p((n+1)dx, t)

(8.45)

We can then perform Taylor expansions in both dx and dt to give

@

@t
p(ndx, t) + O(dt) =

✓
1

2
(1 + ⇢)Pm � Pm +

1

2
(1 � ⇢)Pm

◆
p(ndx, t)

+

✓
�

1

2
(1 + ⇢)Pm +

1

2
(1 � ⇢)Pm

◆
dx

@

@x
p(ndx, t)

+

✓
1

4
(1 + ⇢)Pm +

1

2
(1 � ⇢)Pm

◆
dx
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2

@x2
p(ndx, t) + O(dx

3). (8.46)

Simplifying, and taking the limit as dx and dt tend to zero, gives an advection-di↵usion partial

di↵erential equation for the probability of the position of the cell:

@p

@t
= D

@
2
p

@x2
� v

@p

@x
, (8.47)

where

D = lim
dx!0

Pmdx
2

2
and v = lim

dx!0
Pm⇢ dx. (8.48)

The initial conditions are given as the continuous extension of the discrete initial condition:

p(x, 0) = p
0(x).

We now make a number of remarks about the derivation.

• If ⇢ = 0 the the jumps are unbiased, and the position of the particle evolves according to

the di↵usion equation.

• We can verify that our results make sense by considering the units of the parameters D

and v. In SI units we have:

– the units of Pm are s�1 and those of dx are m, hence the units of D are m2s�1;

– the units of Pm are s�1, those of dx are m and ⇢ is non-dimensional, hence the units

of v are ms�1.
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• The bias must scale with dx for a well-defined limit (since Pm scales like 1/dx
2).

• Equation (8.47) can also be used to describe the evolution of a population of non-interacting

cells by suitable choice of initial condition.

There are many ways to extend the basic framework used above to take more biological detail

into account. The key point is to include all the relevant (source and sink) terms when using the

principle of mass balance to derive the discrete conservation equations. Other processes that

could be included are:

• chemotaxis – here, the probabilities of moving left and right from site n will depend on the

concentration of a di↵usible chemoattractant in boxes n ± 1 and box n;

• proliferation and death;

• competition for space.

We consider this idea of competition for space in the next section.

8.2.2 A model of biased cell motility that includes competition for space

We now consider a population of cells undergoing a random walk on one-dimensional lattice

along the x-axis, where the lattice sites are all of width dx. We assume that dx is approximately

equal to one cell diameter, so that at most one cell can occupy any site on the lattice at any time.

We let p(An, t) be the probability that a cell is in lattice site n at time t. The probability that

the lattice site is empty is denoted p(0n, t) where p(0n, t) = 1 � p(An, t). We prescribe initial

conditions of the form p(An, 0) = p
0
n i.e. the probability that a cell is initially at site n is p

0
n for

n 2 Z.
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Figure 8.3: Illustration of the biased random walk with exclusion in one dimension. Note that if
the cell at lattice site n attempts to jump left, the jump is aborted because there is already a
cell in site n � 1.

We assume that over a time step of length dt, the cell attempts to move with probability Pmdt.

If the cell attempts to move, it will jump one lattice site to the right with constant probability
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(1 + ⇢)/2, or one lattice site to the left with constant probability (1 � ⇢)/2, but the attempted

move is successful only if the target site is vacant.

We can write down a discrete conservation equation for the change in occupancy probability of

lattice site n over time step [t, t + dt):

p(An, t + dt) � p(An, t) =
1

2
(1 + ⇢)Pmdt p(An�1, 0n, t) �

1

2
(1 � ⇢)Pmdt p(0n�1, An, t)

+
1

2
(1 � ⇢)Pmdt p(0n, An+1, t) �

1

2
(1 + ⇢)Pmdt p(An, 0n+1, t),

(8.49)

where p(An, 0m) denotes the probability that site n is occupied and site m is vacant. To make

progress in deriving a corresponding advection-di↵usion partial di↵erential equation, we write

p(An, t + dt) � p(An, t) =
Pm

2
dt

h
p(An�1, 0n, t) � p(0n�1, An, t)

i

+
Pm

2
dt

h
p(0n, An+1, t) � p(An, 0n+1, t)

i

+
Pm

2
⇢ dt

h
p(An�1, 0n, t) � p(0n�1, An, t)

i

�
Pm

2
⇢ dt

h
p(0n, An+1, t) � p(An, 0n+1, t)

i
. (8.50)

We now divide by dt and simplify the first two terms on the right-hand side using conservation

statements of the form

p(An, Am, t) + p(An, 0m, t) = p(An, t), (8.51)

to give
Pm

2

h
p(An�1, t) � 2p(An, t) + p(An+1, t)

i
. (8.52)

In order to close the system of discrete conservation equations (for n 2 Z), so that the right-hand

side contains only occupancy probabilities of single lattice sites (rather than pairs of neighbouring

lattice sites), we make the assumption that the occupancy probabilities of neighbouring lattice

sites are independent of one another e.g.

p(An, 0n±1) = p(An)p(0n±1). (8.53)
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This is known as a mean-field approximation, and it allows us to write

p(An, t + dt) � p(An, t)

dt
=

Pm

2

h
p(An�1, t) � 2p(An, t) + p(An+1, t)

i
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2
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⇤
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h�

1 � p(An�1, t)
�

�
�
1 � p(An+1)

�io
. (8.54)

Similarly to the previous section, if the size of the lattice sites (and hence the cell diameter) are

su�ciently small compared to the region occupied by the cell population, we can relate p(An, t)

to a continuous probability by writing (with plenty of abuse of notation!) p(An, t) = p(ndx, t) so

that

p(ndx, t + dt) � p(ndx, t)

dt
=

Pm

2

h
p((n � 1)dx, t) � 2p(ndx, t) + p((n + 1)dx, t)

i
(8.55)

+
Pm

2
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1 � p(ndx, t)

⇤⇥
p((n � 1)dx, t) � p((n + 1)dx, t)

⇤

+ p(ndx, t)
h�

1 � p((n � 1)dx, t)
�

�
�
1 � p((n + 1)dx)

�io
.

We can then perform Taylor expansions in both dx and dt, and take the limit as dx and dt tend

to zero, to give an advection-di↵usion partial di↵erential equation for the cell density:

@p

@t
= D

@
2
p

@x2
� v

@

@x

�
p(1 � p)

�
, (8.56)

where

D = lim
dx!0

Pmdx
2

2
and v = lim

dx!0
Pm⇢ dx. (8.57)

Once again, the initial conditions are given as the continuous extension of the discrete initial

condition: p(x, 0) = p
0(x).

As in the non-excluding case if ⇢ = 0 then the jumps are unbiased and the position of the particle

evolves according to the di↵usion equation. However, if ⇢ 6= 0, then we note two di↵erences.

First, we need to use a moment closure approximation to derive a closed form partial di↵erential

equation describing evolution of the density over time. This means that Equation (8.56) does not

exactly describe how the density evolves – in particular, we might expect discrepancies whenever

there are correlations in lattice site occupancies, so that p(An, Am) is not well approximated by

p(An)p(Am). We also note that the inclusion of a simple description of competition for space

impacts the advection term, changing it from v@p/@x to v@p(1 � p)/@x.
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