
B5.2 - Sheet 1 Applied Partial Differential Equations

Questions marked as optional are not expected to be handed in and will not be marked.

1. Find a parametric solution for the PDE

ux + uuy = 1,

with u = x/2 on y = x, 0 ≤ x ≤ 1, and state the domain of definition.

2. Find the solution of
yux − 2xyuy = 2xu

such that u = y3 when x = 0 and 1 ≤ y ≤ 2. What is the domain of validity of the solution?
Describe the behaviour of u as y → 0+ in this domain.

3. Find, in parametric form, the solution of

(x− u)ux + uy + u = 0

with u = 1 on y = x, 0 < x < 1/2. Show that u is determined in the region

− sinh y < x <
e1/2−y

2
.

4. (a) Suppose the ODEs
dx

a(x, y, u)
=

dy

b(x, y, u)
=

du

c(x, y, u)

have two linearly independent solutions f(x, y, u) = const and g(x, y, u) = const. Ex-
plain why f and g must satisfy the equations

afx + bfy + cfu = 0, agx + bgy + cgu = 0.

(b) [This part is optional, but its application to the example in (c).]
Show that, if u(x, y) is determined implicitly by the relation

f(x, y, u) = F
(
g(x, y, u)

)
,

where F is any (suitably smooth) function, then u(x, y) satisfies the PDE

a
∂u

∂x
+ b

∂u

∂y
= c.

[Hint: Differentiate with respect to x and y and then try to eliminate fx, fy, gx, gy.]

(c) Hence show that the general solution of the PDE yux + u2uy = u2 is given by

u = y + F
(
x+

y

u
− log u

)
.

5. Find the explicit solution of the PDE

(1 + u)
∂u

∂x
+ y

∂u

∂y
= u

subject to the boundary data

(i) u(x, 1) = x for 0 ≤ x ≤ 1; (ii) u(x, 1) = −x for 0 ≤ x ≤ 1.



In case (i), state where the solution is uniquely determined and sketch this region in the
(x, y)-plane.

In case (ii), show that all the characteristic projections pass through the point (x, y) =
(log 2, 2), where the Jacobian J = |∂(x, y)/∂(τ, s)| = 0. Hence find and sketch the region
of the (x, y)-plane where u is uniquely determined. Explain what happens to the graph of
u(x, y) versus x as y increases from 1 to 2.

6. Solve the PDE

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0

for t > 0, subject to u(x, 0) = f(x), in each of the following two cases:

(i) f(x) =


0 x < 0,

x 0 ≤ x < 1,

1 1 ≤ x,
(ii) f(x) =


0 x < 0,

−x 0 ≤ x < 1,

−1 1 ≤ x.

In case (ii), find a single-valued weak solution by introducing a shock. Sketch the resulting
solution u(x, t) versus x as t varies, and the characteristic projections in the (x, t)-plane.

7. Solve the Cauchy problem

∂u

∂x
+ u

∂u

∂y
= 0 x > 0,

u = u0(y) x = 0,

where

u0(y) =

{
y(1− y) 0 < y < 1,

0 y < 0, y > 1.

Show that u becomes multi-valued on the curve y = (1 + x)2/(4x), x > 1. Sketch the
characteristic projections in the (x, y)-plane and indicate where a unique classical solution
exists. Also sketch profiles of u(x, y) versus y for different values of x > 0.

8. Suppose u(x, t) satisfies

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, 0 < ε� 1.

Show that the change of variables to ξ and τ , where t = τ , x− V t = εξ, gives

(−V + u)
∂u

∂ξ
=
∂2u

∂ξ2
(1)

when small terms of order ε are neglected. Assuming that u → u± as ξ → ±∞ (where u±
are constants), deduce that

V = 1
2 (u− + u+) , u+ ≤ u−,

Determine the form of and sketch the solution u(ξ), and use this to interpret the nature and
location of shocks in the system when ε = 0.

Hint: to show u+ ≤ u−, first multiply (1) by u and integrate to obtain the relation[
−V u

2

2
+
u3

3

]+∞
−∞

+

∫ ∞
−∞

(
∂u

∂ξ

)2

dξ = 0.


