- 1. In this question all functions and distributions are assumed real-valued.
 - (a) [10 marks] What does it mean to say that a distribution $u \in \mathcal{D}'(\mathbb{R}^n)$ has order $m \in \mathbb{N}_0$? Show that a positive distribution $v \in \mathcal{D}'(\mathbb{R}^n)$ has order 0 and explain in what sense it is

If $u, v \in \mathcal{D}'(\mathbb{R}^n)$ are two distributions we write $u \leq v$ when $v - u \geq 0$, that is, when v - u is a positive distribution.

Show that if $u \leq v$, then u has order $m \in \mathbb{N}_0$ if and only if v has order $m \in \mathbb{N}_0$.

What can you say about a distribution $w \in \mathcal{D}'(\mathbb{R})$ that satisfies $w' \geqslant 0$?

(b) [8 marks] In each of the following cases find all the distributions $u \in \mathcal{D}'(\mathbb{R})$ that satisfies the given differential inequality.

 $(1) u' \geqslant 1$

 $(2) u' \geqslant u$

 $(3) u'' \geqslant u$

- (c) [7 marks] Denote $\operatorname{sgn}(t) = t/|t|$ for $t \in \mathbb{R} \setminus \{0\}$ and $\operatorname{sgn}(0) = 0$. Define for each t > 0 the function $T_t(y) = \sqrt{y^2 + t}$, $y \in \mathbb{R}$.
 - (i) Assume $f \in C^{\infty}(\mathbb{R}^n)$. Calculate $T_t(f)\partial_j T_t(f)$ for each j and deduce the formula

$$\left|\nabla T_t(f)\right|^2 + T_t(f)\Delta T_t(f) = \left|\nabla f\right|^2 + f\Delta f.$$

Use this to conclude that

$$\Delta T_t(f) \geqslant \frac{f}{T_t(f)} \Delta f$$

holds on \mathbb{R}^n .

(ii) Assume $u \in L^1_{loc}(\mathbb{R}^n)$ and that $\Delta u \in L^1_{loc}(\mathbb{R}^n)$. Prove, for instance using mollifiers, that

$$\Delta |u| \geqslant \operatorname{sgn}(u) \Delta u \quad \text{ in } \mathscr{D}'(\mathbb{R}^n).$$