
Distribution Theory MT20/HT21

Problem Sheet 4

Problem 1. This question provides a condition ensuring that the usual partial derivatives coin-

cide with the distributional partial derivatives. Prove Lemma 5.21 from the lecture notes: If the

dimension n ≥ 2 and f ∈ C1(Rn \{0})∩L1
loc(R

n) has usual partial derivatives ∂jf ∈ L1
loc(R

n)
for each direction 1 ≤ j ≤ n, then also

∫

Rn

∂jfϕ dx = −

∫

Rn

f∂jϕ dx

holds for all ϕ ∈ D(Rn). Give an example to show that it can fail for dimension n = 1. Show

that for dimension n = 1 we instead have the following: If f ∈ C1(R \ {0}) ∩ C(R) and the

usual derivative f ′ ∈ L1
loc(R), then

∫

R

f ′ϕ dx = −

∫

R

fϕ′ dx

holds for all ϕ ∈ D(R).

Problem 2. Boundary values in the sense of distributions for holomorphic functions.

(a) Prove that for each n ∈ N,

(

x+ iε
)−n

→
(

x+ i0
)−n

in D
′(R) as ε ց 0,

where the distribution
(

x+ i0
)−n

was defined in Problem 2 on Sheet 3.

A holomorphic function f : H → C on the upper half-plane H =
{

z ∈ C : Im(z) > 0
}

is said

to be of slow growth if for each R > 0 there exist m = mR ∈ N0 and c = cR ≥ 0 so

|f(z)| ≤
c

Im(z)m

holds for all z ∈ H with
∣

∣Re(z)
∣

∣ ≤ R and Im(z) < 2.

(b) Prove that if f : H → C is holomorphic of slow growth, then it has a boundary value in the

sense of distributions:

〈

f(x+ i0), ϕ
〉

:= lim
εց0

∫

R

f(x+ iε)ϕ(x) dx

exists for all ϕ ∈ D(R) and defines a distribution. [Hint: Assume first that m = 0 above and

let F : H → C be the holomorphic primitive with F (i) = 0. Explain why F has a continuous

extension to the closed upper half-plane H and use this to conclude the proof in this special

case. Then use induction on m.]
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Problem 3. Distributions defined by finite parts.

Recall from Sheet 2 that the distributional derivative of log |x| is the distribution pv
(

1
x

)

defined

by the principal value integral

〈

pv
(

1
x

)

, ϕ
〉

:= lim
εց0

(
∫ −ε

−∞

+

∫ ∞

ε

)

ϕ(x)

x
dx , ϕ ∈ D(R).

In order to represent the higher order derivatives one can use finite parts: Let n ∈ N with n > 1.

We then define fp
(

1
xn

)

for each ϕ ∈ D(R) by the finite part integral

〈

fp
(

1
xn

)

, ϕ
〉

:=

∫ ∞

−∞

ϕ(x)−
∑n−2

j=0
ϕ(j)(0)

j!
xj − ϕ(n−1)(0)

(n−1)!
xn−1

1(−1,1)(x)

xn
dx.

(a) Check that hereby fp
(

1
xn

)

is a well-defined distribution on R. Show that

d

dx
pv

(

1
x

)

= −fp
(

1
x2

)

and
d

dx
fp
(

1
xn

)

= −nfp
(

1
xn+1

)

for all n > 1. Is fp
(

1
xn

)

homogeneous? (See Problem 4 on Sheet 2 for the definition of

homogeneity.)

(b) Show that for n > 1 we have xnfp
(

1
xn

)

= 1 and find the general solution to the equation

xnu = 1 in D ′(R). What is the general solution to the equation (x− a)nv = 1 in D ′(R) when

a ∈ R \ {0}?

(c) Optional. Let p(x) ∈ C[x] \ {0} be a nontrivial polynomial. Describe the general solution

w ∈ D ′(R) to the equation

p(x)w = 1 in D
′(R).

Problem 4. A function f : R → R is convex if for all x0, x1 ∈ R and λ ∈ (0, 1) we have

f
(

λx1 + (1− λ)x0

)

≤ λf
(

x1

)

+ (1− λ)f
(

x0

)

. (1)

A function a : R → R satisfying (1) with equality everywhere is called an affine function.

(a) Show that an affine function must have the form a(x) = a1x + a0 for some constants a0,

a1 ∈ R. Show also that a function f : R → R is convex if and only if it for each compact

interval [α, β] ⊂ R has the property:

when a is affine and f(x) ≤ a(x) for x ∈ {α, β}, then f ≤ a on [α, β]

(b) Show that a convex function f : R → R satisfies the 3 slope inequality:

f(x2)− f(x1)

x2 − x1

≤
f(x3)− f(x1)

x3 − x1

≤
f(x3)− f(x2)

x3 − x2

holds for all triples x1 < x2 < x3. Deduce that a convex function must be continuous and that

it is differentiable except for in at most countably many points.
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Optional: Show that a convex function must be locally Lipschitz continuous: for each r > 0
there exists L = Lr ≥ 0 so |f(x)− f(y)| ≤ L|x− y| holds for all x, y ∈ [−r, r].
(c) Assume that f : R → R is twice differentiable. Show that f is convex if and only if

f ′′(x) ≥ 0

holds for all x ∈ R.

(d) Let u ∈ D ′(R) and assume that u′′ ≥ 0 in D ′(R). Show that u is represented by a convex

function.
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