Distribution Theory MT20/HT21
Problem Sheet 4

Problem 1. This question provides a condition ensuring that the usual partial derivatives coin-
cide with the distributional partial derivatives. Prove Lemma 5.21 from the lecture notes: If the
dimensionn > 2 and f € C'(R™\ {0}) NL{,.(R"™) has usual partial derivatives 9; f € L{..(R™)
for each direction 1 < j < n, then also
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holds for all ¢ € Z(R™). Give an example to show that it can fail for dimension n = 1. Show
that for dimension n = 1 we instead have the following: If f € C}(R \ {0}) N C(R) and the

usual derivative f’ € L} _(R), then
/f’sodx = —/fw’d:v
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Problem 2. Boundary values in the sense of distributions for holomorphic functions.
(a) Prove that for each n € N,

holds for all ¢ € Z(R).

(x+ie) " = (z+10)"" in Z'(R) as € \, 0,
where the distribution (x + iO) ~" was defined in Problem 2 on Sheet 3.

A holomorphic function f: H — C on the upper half-plane H = {z € C: Im(z) > 0} is said
to be of slow growth if for each R > 0 there exist m = mpr € Ny and ¢ = cg > 0 so
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holds for all z € H with |Re(z)| < R and Im(z) < 2.
(b) Prove that if f: H — C is holomorphic of slow growth, then it has a boundary value in the
sense of distributions:

(f(z+10), ) := li\r‘%/Rf(x—i-ie)go(:U)dx

exists for all ¢ € Z(R) and defines a distribution. [Hint: Assume first that m = 0 above and
let F: H — C be the holomorphic primitive with F'(i) = 0. Explain why F has a continuous
extension to the closed upper half-plane H and use this to conclude the proof in this special
case. Then use induction on m.]



Problem 3. Distributions defined by finite parts.
Recall from Sheet 2 that the distributional derivative of log |x| is the distribution pv( ) defined
by the principal value integral

(pv(2), _g{%(/ /) de, e 2(R).

In order to represent the higher order derivatives one can use finite parts: Let n € N withn > 1.
We then define fp (L) for each ¢ € Z(R) by the finite part integral
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(a) Check that hereby fp (%) is a well-defined distribution on R. Show that

Lpv(h) = (%) and S p(%) = —nfp(k)
for all n > 1. Is fp(Z;) homogeneous? (See Problem 4 on Sheet 2 for the definition of
homogeneity.)
(b) Show that for n > 1 we have x”fp(#) = 1 and find the general solution to the equation
2™u = 11in 2’(R). What is the general solution to the equation (z — a)"v = 1 in Z’'(R) when
ae€ R\ {0}?
(c) Optional. Let p(x) € Clz] \ {0} be a nontrivial polynomial. Describe the general solution
w € 2'(R) to the equation

p(r)w =1 in Z'(R).

Problem 4. A function f: R — R is convex if for all 2o, 21 € Rand X € (0, 1) we have

Fz 4+ (1= Nao) < Af(21) + (1= X) f(20)- (1)

A function a: R — R satisfying (1) with equality everywhere is called an affine function.

(a) Show that an affine function must have the form a(z) = a1z + a, for some constants ay,
a; € R. Show also that a function f: R — R is convex if and only if it for each compact
interval [, 5] C R has the property:

when a is affine and f(z) < a(z) for x € {«, 8}, then f < a on [a, ]

(b) Show that a convex function f: R — R satisfies the 3 slope inequality:

f(x2) — f(21) < flxz) — f(z1) < f(x3) — f(x2)

To — X1 - T3 — X1 - T3 — T2

holds for all triples z; < x5 < 3. Deduce that a convex function must be continuous and that
it is differentiable except for in at most countably many points.
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Optional: Show that a convex function must be locally Lipschitz continuous: for each r > 0
there exists L = L, > 0so |f(z) — f(y)| < L|x — y| holds for all z, y € [—7,7].
(c) Assume that f: R — R is twice differentiable. Show that f is convex if and only if

f'(x) =0

holds for all z € R.
(d) Let uw € 2'(R) and assume that v” > 0 in 2'(R). Show that u is represented by a convex

function.



