B4.3 Specimen Paper 2020

 (a) [9 marks] State the definitions of test function φ ∈ D(ℝⁿ) and distribution u ∈ D'(ℝⁿ). We now assume that u ∈ D'(ℝⁿ) and j ∈ {1, ..., n}. Explain how one should define its distributional partial derivative ∂_ju and show that it reduces to the usual concept for C¹ functions.

Suppose that $\theta \in \mathscr{D}(\mathbb{R}^n)$ and let $(\rho_{\varepsilon})_{\varepsilon>0}$ be the standard mollifier on \mathbb{R}^n .

- (i) Define $u * \theta$ and explain how to prove that $u * \theta \in C^{\infty}(\mathbb{R}^n)$, $(u * \theta)(x) = \langle u, \theta(x \cdot) \rangle$ and $\partial_j(u * \theta) = (\partial_j u) * \theta = u * (\partial_j \theta)$.
- (ii) Explain why $\rho_{\varepsilon} * u \to u$ in $\mathscr{D}'(\mathbb{R}^n)$ as $\varepsilon \searrow 0$.

[Detailed arguments are not required in (i), (ii) and it suffices to merely list the main steps of the proofs.]

State and prove the *constancy theorem* for distributions on \mathbb{R}^n .

- (b) [10 marks] Define the product au for $a \in C^{\infty}(\mathbb{R})$ and $u \in \mathscr{D}'(\mathbb{R})$. State the Leibniz rule for differentiation of au. [No proof is required.]
 - (i) Solve the equation

$$u' + 2xu = \delta_0$$

for $u \in \mathscr{D}'(\mathbb{R})$, where δ_0 is Dirac's delta function at 0.

(ii) Let $f \in \mathscr{D}'(\mathbb{R})$. Solve the equation

$$v' + 2xv = f$$

for $v \in \mathscr{D}'(\mathbb{R})$ [The fundamental theorem of calculus for distributions on \mathbb{R} can be used without proof provided you state it clearly.]

(iii) What is the general solution to

$$w' - 2xw = 0$$

in the space of compactly supported distributions $w \in \mathscr{E}'(\mathbb{R})$?

(c) [6 marks] Prove that $u \in W^{1,\infty}(0,1)$ if and only if $u \in L^{\infty}(0,1)$ admits a Lipschitz continuous representative. [You may use without proof that any sequence (f_j) that is bounded in $L^{\infty}(0,1)$ admits a subsequence (f_{j_k}) so that for some $f \in L^{\infty}(0,1)$ we have $f_{j_k} \to f$ in $\mathscr{D}'(0,1)$.]

2. (a) [9 marks] For each r > 0 we define the r-dilation of a test function $\varphi \in \mathscr{D}(\mathbb{R}^n)$ by the rule

$$(d_r\varphi)(x) = \varphi(rx), \quad x \in \mathbb{R}^n.$$

- (i) Extend the r-dilation to distributions $u \in \mathscr{D}'(\mathbb{R}^n)$ in a consistent manner.
- (ii) Let $\alpha \in (-n, \infty)$ and $u_{\alpha}(x) = |x|^{\alpha}$ for $x \in \mathbb{R}^n \setminus \{0\}$. Show that u_{α} is a regular distribution on \mathbb{R}^n . Prove that $d_r u_{\alpha} = r^{\alpha} u_{\alpha}$ for all r > 0. We express this by saying that u_{α} is homogeneous of degree α .
- (iii) Show that the Dirac delta function δ_0 concentrated at the origin $0 \in \mathbb{R}^n$ is homogeneous of degree -n.
- (b) [8 marks] Define for each $\varphi \in \mathscr{D}(\mathbb{R})$,

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right),\varphi\right\rangle = \lim_{a\searrow 0} \left(\int_{-\infty}^{-a} + \int_{a}^{\infty}\right) \frac{\varphi(x)}{x} \,\mathrm{d}x.$$

Show that hereby $pv(\frac{1}{x}) \in \mathscr{D}'(\mathbb{R})$ and that it is homogeneous of degree -1 (as defined in (a) above). Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\log|x| = \mathrm{pv}\big(\frac{1}{x}\big).$$

What is the order of $pv(\frac{1}{x})$?

(c) [8 marks] Show that $u = \frac{d}{dx} \left(pv(\frac{1}{x}) \right)$ solves the equation

$$x^2 u = -1 \tag{1}$$

in the sense of $\mathscr{D}'(\mathbb{R})$. What is the general solution $u \in \mathscr{D}'(\mathbb{R})$ to (1)? [Results from the course can be used without proof provided they are clearly stated.]

3. (a) [10 marks] Let $E = \frac{1}{2\pi} \log |z|$, where $z = x + iy \in \mathbb{C} \approx \mathbb{R}^2$. Explain why E is a distribution on \mathbb{R}^2 and show that $\Delta E = \delta_0$ in $\mathscr{D}'(\mathbb{R}^2)$, where δ_0 is Dirac's delta function at 0. Using for instance that $\Delta = 4\partial^2/\partial z \partial \bar{z}$ deduce that

$$\frac{\partial}{\partial \bar{z}} \left(\frac{1}{\pi z} \right) = \delta_0 \text{ in } \mathscr{D}'(\mathbb{R}^2).$$

Let $f \in \mathscr{E}'(\mathbb{R}^2)$. Find the general solution to the PDE

$$\frac{\partial u}{\partial \bar{z}} = f \text{ in } \mathscr{D}'(\mathbb{R}^2).$$

Explain why all solutions u will be C^{∞} on an open subset ω of \mathbb{R}^2 if the right-hand side f is C^{∞} on ω . [Results from the course can be used without proof provided they are clearly stated.]

(b) [4 marks] Let $G: \mathbb{C} \to \mathbb{C}$ be an entire function satisfying $G(z) \neq 0$ for all $z \in \mathbb{C}$. Explain why $g = \log |G| \in \mathscr{D}'(\mathbb{R}^2)$.

Prove that $\Delta g = 0$ holds in both the usual and the distributional sense.

- (c) [5 marks] Let $F: \mathbb{C} \to \mathbb{C}$ be an entire function such that F(z) = 0 if and only if z = 0. Put $f = \log |F|$. Explain why $f \in \mathscr{D}'(\mathbb{R}^2)$ and compute Δf in $\mathscr{D}'(\mathbb{R}^2)$.
- (d) [6 marks] Let P and N be finite subsets of \mathbb{C} and $H: \mathbb{C} \setminus P \to \mathbb{C}$ be a holomorphic function with poles in P and zeros precisely in N. Explain why $h = \log |H|$ defines a distribution on \mathbb{R}^2 and compute Δh in $\mathscr{D}'(\mathbb{R}^2)$. [Results from the course can be used without proof provided they are clearly stated.]