When not specified, the scalar field \mathbb{F} may be assumed to be either \mathbb{R} or \mathbb{C} . The questions on this sheet mostly relate to the videos of chapter 2.

- **1.** Let $(X, \|\cdot\|)$ be a normed space
 - (i) Let $S, T \in L(X)$ be invertible. Prove that also ST is invertible.
 - (ii) Let $S \in L(X)$ be algebraically invertible, i.e. so that there exists a map $T: X \to X$ so that TS = ST = Id which we call the algebraic inverse and denote by S^{-1} . Prove that $S^{-1} \in L(X)$ if and only if

(*) $\exists \delta > 0$ so that $\forall x \in X$ we have $||S(x)|| \ge \delta ||x||$.

Conversely show that (\star) is violated if and only if there exist $x_n \in X$ with $||x_n|| = 1$ so that $Sx_n \to 0$.

2. Let X = C([-1,1]) equipped with the sup-norm and define $f: X \to \mathbb{R}$ by

$$f(\phi) = \int_0^1 \phi(t) dt - \int_{-1}^0 \phi(t) dt.$$

Prove that

- (i) $f \in X^* = L(X, \mathbb{F})$
- (ii) ||f|| = 2
- (iii) There exists no $\phi \in X$ so that $\|\phi\|_{sup} = 1$ and $f(\phi) = 2$.
- **3.** Let X be the subspace of ℓ^2 that is defined by

$$X:=\{x\in \ell^2: (jx_j)\in \ell^1\}\subset \ell^2$$

and define

$$P(x_1, x_2, \ldots) = (\sum_{j=1}^{\infty} j x_j, 0, 0, \ldots).$$

- (i) Check that P is a linear map from X to X such that $P^2 = P$.
- (ii) Is X (equipped with the ℓ^2 -norm) a Banach space?
- (iii) Is P bounded?

Carefully justify your answers to (ii) and (iii).

4. Let X = C[a, b] equipped with the sup norm. For x in X define Tx by

$$(Tx)(t) = \int_a^t x(s) \,\mathrm{d}s \quad (t \in [a, b]).$$

- (i) Prove that this defines a bounded linear operator $T \in L(X)$ and that ||T|| = b a.
- (ii) Find a function $k : \{ (s,t) \mid a \leq s \leq t \leq b \} \to \mathbb{R}$ so that

$$(T^2x)(t) = \int_a^t k(s,t)x(s) \,\mathrm{d}s.$$

and determine $||T^2||$.

(iii) (Optional) Determine $k_n : \{ (s,t) \mid a \leq s \leq t \leq b \} \to \mathbb{R}$ so that

$$(T^n x)(t) = \int_a^t k_n(s, t) x(s) \,\mathrm{d}s.$$

5. Let $t_{jk} \in \mathbb{R}$ (j, k = 1, 2, ...) and denote by $e^{(k)}$, k = 1, 2, ... the sequences $e^{(k)} = (\delta_{kj})_{j \in \mathbb{N}}$. Show that if $\sup_{k,j} |t_{jk}| < \infty$ then there exists a bounded linear operator $T : \ell^1 \to \ell^\infty$ so that

$$(\star\star) \qquad (Te^{(k)})_j = t_{jk}.$$

Conversely, show that if there is a bounded linear operator $T : \ell^1 \to \ell^\infty$ so that $(\star\star)$ holds, then we must have that $\sup_{k,j} |t_{jk}| < \infty$ and indeed $\sup_{k,j} |t_{jk}| = ||T||$.

6. (i) Let $\alpha = (\alpha_i)$ be a fixed bounded sequence. Define M_{α} by

$$M_{\alpha} \colon (x_1, x_2, x_3, \ldots) \mapsto (\alpha_1 x_1, \alpha_2 x_2, \alpha_3 x_3, \ldots).$$

Prove that $M_{\alpha} \in L(\ell^{\infty})$. For which values of α is M_{α} injective? Prove that M_{α} has a bounded inverse if and only if $\inf_{j} |\alpha_{j}| > 0$.

(ii) Let X be the space of real polynomials on [0, 1] regarded as a subspace of the Banach space C[0, 1] of continuous functions equipped with the sup norm. For k = 0, 1, 2, ..., let m_k be the k-th monomial, i.e.

$$m_k(t) = t^k \quad (t \in [0, 1]).$$

Define $T: X \to X$ by letting

$$Tm_k = \frac{1}{k+1}m_k$$

and extend T to X by linearity.

- (a) Give an integral expression for Tx for a general $x \in X$ and use this expression to prove that T can be extended to a bounded linear operator $\tilde{T} \in L(C[0, 1])$ with $\|\tilde{T}\| = 1$.
- (b) Prove that $T: X \to X$ is a bijection but that its inverse is not bounded.
- (c) Is $T: C[0,1] \to C[0,1]$ still injective? Is it still surjective?