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Dictionary of some terminology from topology and analysis

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Prof. Alexander F. Ritter, Mathematical Institute, Oxford.

1. Topology: a dictionary

⋄ A topological space is a set X and a collection of subsets of X called open sets such that:

(1) the empty set is open,
(2) the whole set is open,
(3) a finite intersection of open sets is open,
(4) an arbitrary union of open sets is open.

Example. A metric1 space (X, d) is a topological space: the open sets are any union of balls
Br(x) = {y ∈ X : d(x, y) < r} (for centres x ∈ X , radii r > 0).

⋄ Convention: our spaces are always understood to be topological spaces.

⋄ A subset is called closed if it is the complement of an open set.

⋄ A neighbourhood2 of x ∈ X is a subset which contains an open set U with x ∈ U .

⋄ A map f : X → Y is continuous if f−1(open set) is always open.

(1) A composition of continuous functions is continuous,
(2) f continuous ⇒ f(compact subset) is compact,
(3) f continuous ⇒ f(connected subset) is connected.
(4) Continuous bijection from a compact space to a Hausdorff space ⇒ homeomorphism.
(5) Continuous surjection from a compact space to a Hausdorff space ⇒ quotient map.

⋄ f : X → Y is a quotient map if U ⊂ Y open ⇔ f−1(U) ⊂ X is open.

⋄ X is Hausdorff if any two points can be separated by open sets.3

⋄ X is compact if every open cover by open sets has a finite subcover.4

⋄ Heine-Borel theorem: subsets of Rn are compact ⇔ they are closed and bounded.

⋄ Example. For metric spaces X , Y :

(1) A subset S ⊂ X is closed ⇔ S ∋ xn → x implies x ∈ S.
(2) A map f : X → Y is continuous ⇔ f(xn) → f(x) whenever xn → x.
(3) X is automatically Hausdorff.
(4) X is compact ⇔ any sequence has a convergent subsequence.5

⋄ X is connected if every continuous function f : X → Z is constant.

⋄ X is path-connected if any two points are joined by a continuous path.6

⋄ X path-connected ⇒ X connected, but the converse is false in general.7

⋄ X is simply-connected if it is connected and any loop in X is contractible.8

⋄ A continuous deformation of f : X → Y is a continuous map F : X × [0, 1] → Y with

Date: This version of the notes was created on September 22, 2016.
1So a function d : X ×X → R with d(x, y) = d(y, x) ≥ 0 with equality if and only if x = y, and such that

the triangle inequality holds: d(x, y) ≤ d(x, z) + d(z, y).
2We do not require the neighbourhood to be an open set. We say open neighbourhood in that case.
3For any x, y ∈ X, there are open sets Ux, Uy containing x, y respectively, with Ux ∩ Uy = ∅.
4So if X = ∪Ui for some open sets Ui, then X = Ui1 ∪ · · · ∪ Uim for some indices i1, . . . , im.
5So xn ∈ X implies xnj

→ x ∈ X for some n1 < n2 < · · ·
6For any x, y ∈ X there is a continuous map f : [0, 1] → X with f(0) = x, f(1) = y.
7The two notions become equivalent if you assume the space is locally path-connected. This means:

for any x ∈ X and any open U containing x, there is an open V ⊂ U which is path-connected, with x ∈ V .
8So for any continuous f : S1 → X there is a continuous F : D → X with F |S1 = f . Here S1 = {z ∈ C :

|z| = 1} is a circle, D = {z ∈ C : |z| ≤ 1} is a disc. By parametrizing D by sz with z = eit ∈ S1, s ∈ [0, 1], you
can view F as a family of loops F : S1 × [0, 1] → X from the constant loop F0 = F (·, 0) to F1 = F (·, 1) = f .
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F (x, 0) = f(x). So Fs(x) = F (x, s) is a family of maps, F0 = f , and F1 is the deformed map.

⋄ A map f : X → Y is bijective if there exists a map g : Y → X such that f ◦ g = idY and
g ◦ f = idX are the identity maps. Such a g is unique and called the inverse g = f−1.

⋄ A homeomorphism f : X → Y is a continuous bijection, with continuous inverse f−1.

⋄ X,Y are homeomorphic if there exists a homeomorphism f : X → Y .

2. Analysis

⋄ f : Rn → Rm is continuously differentiable if all first order partial derivatives exist and
are continuous.1

Explicitly: in coordinates: x = (x1, . . . , xn) ∈ Rn maps to f(x) = (f1(x), . . . , fm(x)) ∈ Rm

for some functions fi : R
n → R, called the components of f .

So we require that ∂fi
∂xj

exist and are continuous for all i, j. We abbreviate ∂xj
fi =

∂fi
∂xj

.

⋄ The Jacobian matrix of f : Rn → Rm is the matrix A(x) = (Aij(x)) = (∂xi
fj) of partial

derivatives:

A(x) =




∂x1
f1 ∂x2

f1 · · · ∂xn
f1

∂x1
f2 ∂x2

f2 · · · ∂xn
f2

· · ·
∂x1

fm ∂x2
fm · · · ∂xn

fm




The linear map given by “multiplication by A(x)” is the derivative map

Df : Rn → R
m, v 7→ Dxf · v = A(x)v.

Example. For f : R → R, A(x) = (f ′(x)), Df : R → R is multiplication by f ′(x).

⋄ Chain rule: Compositions of differentiable maps are differentiable and D(g◦f) = Dg◦Df :

Dx(g ◦ f) = Df(x)g ◦Dxf.

Example. For f, g : R → R recall (g ◦ f)′(x) = g′(f(x)) · f ′(x).

⋄ Convention: the vector ∂xj
f denotes the j-th column of that matrix.

⋄ Example. Linear maps L : Rn → Rm are differentiable with derivative map L. The whole
point of the derivative map is to find the best linear approximation to a map: f(x) = f(p) +
Dpf · (x− p) + error, where error

‖x−p‖ → 0 as x → p.

⋄ f : Rn → R
m is smooth if it has partial derivatives of all orders (they are automatically

continuous).2

Fact: for smooth functions, partial derivatives commute, e.g. ∂x1
∂x2

f = ∂x2
∂x1

f .

For open U, V ⊂ Rn, f : U → V is a diffeomorphism if f is a homeomorphism, and f, f−1

are smooth.

⋄ Integration by substitution (change of variables): If f : V → U is a diffeomorphism,
for open subsets U, V ⊂ Rn, and G = G(x1, . . . , xn) : U → R is a smooth function, then

∫

U

G(x) dx1 · · · dxn =

∫

V

G(f(y)) | detDyf | dy1 · · · dyn

Examples.

1The reason for requiring that the partial derivatives are also continuous is necessary to ensure that the
derivative map exists, in the sense that f(x+ h)− f(x) = Dxf · h+ error, where error

‖h‖
→ 0 as h → 0.

2For example, for the second order, it means: A : Rn → Rnm, x 7→ A(x) is differentiable. As you increase
the order, this becomes complicated since you choose the succession of which partial derivatives to take.
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(1) Let f be the change of variables from polar coordinates r, θ to (x, y) in R2. So f(r, θ) =
(r cos θ, r sin θ), so Df =

(
cos θ −r sin θ
sin θ r cos θ

)
, so | detDf | = r, hence

∫
G(x, y) dx dy =∫

G(r cos θ, r sin θ) r dr dθ.
(2) If γ = γ(t) : [0, 1] → R2 is a smooth curve, and f = f(s) : [a, b] → [0, 1] reparametrizes

time (so any strictly increasing smooth function), then the length of the curve,
∫
|speed| d(time),

is well defined independently of the way we parametrize time:
∫ 1

0
‖γ′(t)‖ dt =

∫ b

a
‖γ′(f(s))‖ f ′(s) ds.

⋄ f : Rn → Rn is a local diffeomorphism near p, if there are open neighbourhoods U, V of
p, f(p) respectively such that the restriction f |U : U → V is a diffeomorphism.

⋄ Convention: we say f : Rn → R
m is defined near p to mean: there is an open set U ⊂ R

n

containing p such that f : U → Rm is defined. We say “for x, y close enough to p, f(p)” to
mean: there are open neighbourhoods U, V of p, f(p) and the statement holds for x ∈ U, y ∈ V .

⋄ Inverse function theorem: Let f : Rn → Rn be a smooth map defined near p ∈ Rn.

If Dpf is invertible, then f is a local diffeomorphism near p.

Explicitly: the theorem hands us a unique smooth map g : Rn → Rn defined near f(p) such
that f(g(y)) = y and g(f(x)) = x (for all x, y close enough to p, f(p) respectively).
Arguably the most important theorem in analysis. It says simple linear algebra (the non-
vanishing of the determinant of a matrix) ensures the smooth invertibility of the map, locally.

⋄ Let f : Rn → Rm be smooth, and n ≥ m. We want to describe the solutions of f(x) = c

near a given solution f(a) = c, where x, a ∈ Rn and c ∈ Rm.

Implicit function theorem: If m columns of Daf are linearly independent, then the vari-
ables xi1 , . . . , xim corresponding to those columns are redundant. Namely, they can be re-
placed by unique smooth functions gi1 , . . . , gim , depending only on the remaining variables,
defined near x = a and satisfying gi1(a) = ai1 , . . . , gim(a) = aim , so that

f(x)|(xi1
=gi1 , ..., xim=gim ) = c

describes all solutions x near a.
Examples. Below, we seek solutions of f = 0 near x = (0, . . . , 0).

(1) f(x, y) = y: ∂yf = 1 6= 0, so f(x, g(x)) = 0 (indeed g(x) = 0).
(2) f(x, y) = x2 − y: ∂yf = −1 6= 0, so f(x, g(x)) = 0 (indeed g(x) = x2).
(3) f(x, y) = (x + 1)2 − 1 + y2: ∂xf |x=0,y=0 = 2 6= 0, so f(g(y), y) = 0 (indeed g(y) =

−1 +
√
1− y2, which is defined near y = 0, and notice g(0) = 0).

Proof of the implicit function theorem: by relabeling coordinates, we may assume the
last m columns of Daf are linearly independent. Abbreviate k = n − m. Consider F :
Rn → Rn, F (x1, . . . , xn) = (x1, . . . , xk, f(x1, . . . , xn)). Notice that DaF is invertible (try
writing the matrix). Apply the inverse function theorem. Then F−1(x1, . . . , xk, c1, . . . , cm) =
(x1, . . . , xk, gk+1, . . . , gn) for unique functions gk+1, . . . , gn of x1, . . . , xk, c. �

Smooth dependence on c in the implicit function theorem: Notice above gi1 , . . . , gim
depend smoothly on c. So there are unique smooth functions Gi1 , . . . , Gim : Rn−m×Rm → R

depending only on non-redundant xj variables and y ∈ Rm, defined near x = a, y = c so that

f(x)|(xi1
=Gi1

, ..., xim=Gim ) = y

describes all solutions of f(x) = y for x near a, and y near c.

⋄ A change of coordinates near x = a means a local diffeomorphism ϕ : Rn → Rn near x = a.

A map f : Rn → Rm becomes f̃ = f ◦ϕ in the new coordinates. So f̃(z) = f(x) for x = ϕ(z).
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⋄ Nonlinear coordinates in the implicit function theorem: There is a change of coor-
dinates of Rn near x = a, and we call the new coordinates z1, . . . , zn non-linear coordinates,

so that solutions of f̃(z) = y near z = ϕ−1(a) are precisely described by the vanishing
z1 = 0, . . . , zm = 0 of m coordinates (and the other zj coordinates are free).
Proof. First permute coordinates of Rn so that we may assume the i1, . . . , im above are
1, . . . ,m. Then put z1 = x1 − g1, . . ., zm = xm − gm, and the other zj = xj. �

3. Complex analysis

⋄ A function f : C → C is holomorphic if it is complex differentiable.1

⋄ Fact: f : C → C is holomorphic if and only if F : R2 → R2, F (x, y) = (f1(x+ iy), f2(x+ iy))
is differentiable with continuous partial derivatives and satisfies

DF ◦ J = J ◦DF

where J =
(
0 −1
1 0

)
(the matrix which rotates by 90◦) corresponds to multiplication by i when

we identify R2 ≡ C, (x, y) ≡ x+ iy.
Remark. DF ◦ J = J ◦DF ⇔ Cauchy-Riemann equations ∂xf1 = ∂yf2, ∂yf1 = −∂xf2 hold.

DF =

(
∂xf1 ∂yf1
∂xf2 ∂yf2

)
=

(
∂xf1 −∂xf2
∂xf2 ∂xf1

)
= r

(
cos θ − sin θ
sin θ cos θ

)

where r, θ are determined by f ′(z) = reiθ . Notice DetDF = |f ′(z)|2 = r2.

⋄ Fact: f holomorphic ⇒ the above F : R2 → R2 is smooth.

⋄ Fact: f holomorphic near p ⇒ f has an absolutely convergent Taylor series2 at p and f is
equal to its Taylor series near p.

⋄ Identity theorem. If f, g : C → C are holomorphic near p, and there is a sequence
p 6= zn → p with f(zn) = g(zn), then f = g near p.

⋄ f : C → C is a biholomorphism if it is bijective and f, f−1 are both holomorphic.
Remark. Since the derivative map is a composition of scaling and rotation, it preserves angles
between vectors. So biholomorphisms are conformal maps, meaning they preserve angles.

⋄ Inverse function theorem. For a holomorphic function f : C → C defined near p, if
f ′(p) 6= 0 then f is a local biholomorphism near p.
Explicitly: the theorem hands us a unique holomorphic g : C → C defined near f(p) such that
f(g(w)) = w and g(f(z)) = z (for all z, w close enough to p, f(p) respectively).

⋄ Riemann mapping theorem. If U 6= ∅,C is a simply connected open subset of C then
there is a biholomorphism f : U → D onto the open unit disc D = {z ∈ C : |z| < 1}.

4. Differential equations

⋄ For smooth smooth V : Rn → Rn, a flowline γ : [a, b] → Rn is a solution of γ′(t) = V (γ(t)).
Idea: V is a vector field (a vector at each point of Rn), γ is a curve running in the V -direction.

⋄ Theorem. For each point p ∈ Rn there is a flowline γ : (−ε, ε) → Rn of V with γ(0) = p,
for small enough ε > 0. Moreover, γ is smooth, unique and depends smoothly3 on p.

1Meaning f ′(z) = limh→0
f(z+h)−f(z)

h
exists. Take h = t ∈ R, let t → 0: then f ′(z) = ∂xf = ∂xf1+i∂xf2.

Take h = it ∈ iR, let t → 0: f ′(z) = −i∂yf = ∂yf2 − i∂yf1. Equating gives the Cauchy-Riemann equations.
2∑∞

n=0 an(z − p)n with an = f(n)(p)/n!
3Meaning: there is a smooth map F : (−ε, ε) × U → Rn, called flow, defined on a small enough neigh-

bourhood U of p (and ε > 0 depends on U), such that t 7→ F (t, q) is the flowline of V through q = F (0, q).
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