B3.2 GEOMETRY OF SURFACES
Dictionary of some terminology from topology and analysis

Comments and corrections are welcome: ritter@maths.ox.ac.uk
Prof. Alexander F. Ritter, Mathematical Institute, Oxford.

1. TOPOLOGY: A DICTIONARY

¢ A topological space is a set X and a collection of subsets of X called open sets such that:
(1) the empty set is open,
(2) the whole set is open,
(3) a finite intersection of open sets is open,
(4) an arbitrary union of open sets is open.

Example. A metrid] space (X,d) is a topological space: the open sets are any union of balls
B, (z) ={y € X : d(z,y) <r} (for centres x € X, radii r > 0).

o Convention: our spaces are always understood to be topological spaces.

o A subset is called closed if it is the complement of an open set.

oA neighbourhOO(ﬂ of x € X is a subset which contains an open set U with x € U.
o Amap f: X — Y is continuous if f~!(open set) is always open.

(1) A composition of continuous functions is continuous,

(2) f continuous = f(compact subset) is compact,

(3) f continuous = f(connected subset) is connected.

(4) Continuous bijection from a compact space to a Hausdorff space = homeomorphism.
(5) Continuous surjection from a compact space to a Hausdorff space = quotient map.

o f:X —Y is a quotient map if U C Y open < f~1(U) C X is open.

¢ X is Hausdorff if any two points can be separated by open sets/]

¢ X is compact if every open cover by open sets has a finite subcover[i

o Heine-Borel theorem: subsets of R" are compact < they are closed and bounded.
o Example. For metric spaces X, Y:

(1) A subset S C X is closed < S > x,, — x implies x € S.

(2) Amap f: X — Y is continuous < f(z,) — f(x) whenever z,, — .
(3) X is automatically Hausdorff.

(4) X is compact < any sequence has a convergent subsequencel[l

© X is connected if every continuous function f: X — Z is constant.

¢ X is path-connected if any two points are joined by a continuous pathﬁ

o X path-connected = X connected, but the converse is false in generalﬂ

¢ X is simply-connected if it is connected and any loop in X is contractiblefi

o A continuous deformation of f : X — Y is a continuous map F : X x [0,1] — Y with
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180 a function d : X X X — R with d(z,y) = d(y,z) > 0 with equality if and only if # = y, and such that
the triangle inequality holds: d(z,y) < d(z, z) 4+ d(z,y).

2We do not require the neighbourhood to be an open set. We say open neighbourhood in that case.

3For any =,y € X, there are open sets Uy, Uy containing ,y respectively, with U, N Uy, = 0.

430 if X = UU; for some open sets U;, then X = U;, U---UU;,, for some indices i1, ..., im.

530 Tn € X implies Tn; =T € X for some ny < ng < - -

6For any =,y € X there is a continuous map f :[0,1] — X with f(0) =z, f(1) = y.

"The two notions become equivalent if you assume the space is locally path-connected. This means:
for any z € X and any open U containing x, there is an open V' C U which is path-connected, with x € V.

8So for any continuous f : S' — X there is a continuous F : D — X with Flg1 = f. Here Sl={zeC:
|| = 1} is a circle, D = {z € C : |z| < 1} is a disc. By parametrizing D by sz with z = ' € S', s € [0, 1], you
can view F as a family of loops F : S x [0,1] — X from the constant loop Fy = F(-,0) to Fy = F(-,1) = f.
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F(z,0) = f(z). So Fs(z) = F(x, s) is a family of maps, Fy = f, and F} is the deformed map.
o A map f: X — Y is bijective if there exists a map g : Y — X such that f o g =idy and
go f =idx are the identity maps. Such a g is unique and called the inverse g = f~1.

o A homeomorphism f : X — Y is a continuous bijection, with continuous inverse f~1.

© X,Y are homeomorphic if there exists a homeomorphism f: X — Y.

2. ANALYSIS

o f:R" — R™ is continuously differentiable if all first order partial derivatives exist and
are continuous

Explicitly: in coordinates: x = (x1,...,2,) € R™ maps to f(z) = (f1(x),..., fm(x)) € R™
for some functions f; : R — R, called the components of f.

So we require that gﬁ: -

¢ The Jacobian matrix of f : R” — R™ is the matrix A(x) = (A4;;(z)) = (04, f;) of partial
derivatives:

exist and are continuous for all 7, j. We abbreviate d,, f; = %.
J

aavlfl awzfl 61371.][1
Aw) = | Onfe Ol Onle
azlfm 8m2fm aznfm

The linear map given by “multiplication by A(x)” is the derivative map
Df:R" = R™ v D,f -v=A(z)v.
Example. For f : R = R, A(z) = (f'(z)), Df : R = R is multiplication by f/(x).
¢ Chain rule: Compositions of differentiable maps are differentiable and D(go f) = Dgo D f:

Example. For f,g: R — Rrecall (go f) (x) =¢'(f(z)) - /().
o Convention: the vector d,, f denotes the j-th column of that matrix.

o Example. Linear maps L : R™ — R are differentiable with derivative map L. The whole
point of the derivative map is to find the best linear approximation to a map: f(z) = f(p) +

D,f - (z —p) + error, where He;i(ZH —0asx —p.

o f:R™ — R™ is smooth if it has partial derivatives of all orders (they are automatically
continuous)

Fact: for smooth functions, partial derivatives commute, e.g. 0y, Oy, f = 0z, 0x, f-
For open U,V C R", f : U — V is a diffeomorphism if f is a homeomorphism, and f, f~!
are smooth.

o Integration by substitution (change of variables): If f: V — U is a diffeomorphism,
for open subsets U,V C R", and G = G(x1,...,2,) : U — R is a smooth function, then

/G(fﬂ)dajl d:z:n:/ G(f(y)) |detDyf|dy1 o dyy
U \4

Examples.

IThe reason for requiring that the partial derivatives are also continuous is necessary to ensure that the

derivative map exists, in the sense that f(x 4+ h) — f(z) = D f - h + error, where e“r;“"r —+0ash—0.

2For example, for the second order, it means: A : R™ — R"™ z — A(x) is differentiable. As you increase
the order, this becomes complicated since you choose the succession of which partial derivatives to take.
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(1) Let f be the change of variables from polar coordinates 7,6 to (z,y) in R%. So f(r,0) =
(rcosf,rsing), so Df = (2§ rsinf) so |det Df| = r, hence [G(z,y)dxdy =
J G(rcos,rsind)rdrdf.
(2) If v =7(t) : [0,1] — R? is a smooth curve, and f = f(s) : [a,b] — [0, 1] reparametrizes
time (so any strictly increasing smooth function), then the length of the curve, [ |speed| d(time),
is well defined independently of the way we parametrize time: fol Iy ()| dt = f; 1V (f(s)I f(s)ds.

o f:R"™ — R" is a local diffeomorphism near p, if there are open neighbourhoods U, V' of
p, f(p) respectively such that the restriction f|y : U — V is a diffeomorphism.

o Convention: we say f : R™ — R™ is defined near p to mean: there is an open set U C R"
containing p such that f : U — R™ is defined. We say “for z,y close enough to p, f(p)” to
mean: there are open neighbourhoods U, V of p, f(p) and the statement holds for x € U,y € V.

¢ Inverse function theorem: Let f: R™ — R™ be a smooth map defined near p € R"™.
If D, f is invertible, then f is a local diffeomorphism near p.

Explicitly: the theorem hands us a unique smooth map g : R™ — R" defined near f(p) such
that f(g(y)) =y and g(f(x)) = « (for all x,y close enough to p, f(p) respectively).

Arguably the most important theorem in analysis. It says simple linear algebra (the non-
vanishing of the determinant of a matrix) ensures the smooth invertibility of the map, locally.

o Let f: R™ — R™ be smooth, and n > m. We want to describe the solutions of f(z) = ¢
near a given solution f(a) = ¢, where z,a € R™ and ¢ € R™.

Implicit function theorem: If m columns of D, f are linearly independent, then the vari-

ables z;,,...,x;, corresponding to those columns are redundant. Namely, they can be re-
placed by unique smooth functions ¢;,,...,g:,,, depending only on the remaining variables,
defined near x = a and satisfying g;, (a) = a;,, ..., ¢9;,, (a) = a;,, , so that

F@ @iy =iy o0 =gim) = €

describes all solutions x near a.
Examples. Below, we seek solutions of f =0 near = (0,...,0).

(1) fz,y) =y: 9yf =1#0, 50 f(z,g(z)) = 0 (indeed g(z) = 0).
(2) flz,y)=a® —y: Oyf = —1+#0, so f(z,g(z)) =0 (indeed g(z) =
3) flz,y) = (@ +1)* = 1+ y* 0pflomoy=0 = 2 # 0, s0 f(9(y),y)
—1+ /1 —y?2, which is defined near y = 0, and notice g(0) = 0).
Proof of the implicit function theorem: by relabeling coordinates, we may assume the

last m columns of D.f are linearly independent. Abbreviate k = n — m. Consider F :
R™ — R"™, F(a1,...,2n) = (x1,..., %k, f(x1,...,2,)). Notice that D, F is invertible (try

xQ

).
0 (indeed g(y) =

writing the matriz). Apply the inverse function theorem. Then F~Y(x1,... 2k, ¢1,...,Cm) =
(T1,- -, Thy Gt 1, - - -, gn) Jor unique functions gii1,...,9n 0f 1,..., 2, c. O

Smooth dependence on ¢ in the implicit function theorem: Notice above g;,,...,¢i,,
depend smoothly on ¢. So there are unique smooth functions Gy, ,...,G;,, : R"™™ xR™ — R

depending only on non-redundant z; variables and y € R™, defined near z = a,y = ¢ so that

f($)|(w¢1:Gi1,...,:mm:G y— Y

describes all solutions of f(x) =y for x near a, and y near c.

© A change of coordinates near x = a means a local diffeomorphism ¢ : R" — R" near z = a.
A map f:R" — R™ becomes f = f o in the new coordinates. So f(z) = f(z) for z = p(2).



4 B3.2 GEOMETRY OF SURFACES, PROF. ALEXANDER F. RITTER

© Nonlinear coordinates in the implicit function theorem: There is a change of coor-
dinates of R™ near x = a, and we call the new coordinates z1, ..., z, non-linear coordinates,
so that solutions of f(z) = y near z = ¢~ !(a) are precisely described by the vanishing
21 =0,..., 2y = 0 of m coordinates (and the other z; coordinates are free).

Proof. First permute coordinates of R™ so that we may assume the iy,...,1,, above are

1,...,m. Then put z1 =21 — g1, ..., Zm = Tm — gm, and the other z; =x;. [
3. COMPLEX ANALYSIS

¢ A function f : C — C is holomorphic if it is complex differentiable I
o Fact: f: C — C is holomorphic if and only if F : R? — R?, F(x,y) = (f1(x+1y), fa(x+iy))
is differentiable with continuous partial derivatives and satisfies

DFoJ=JoDF

where J = (? _01) (the matrix which rotates by 90°) corresponds to multiplication by ¢ when
we identify R? = C, (z,y) = = + iy.
Remark. DF o J = J o DF & Cauchy-Riemann equations Oy f1 = Oy f2, Oyf1 = —0z f2 hold.

DF = 6mfl aufl _ aacfl _azf2 o cosf) —sinf
S\ Oufe Oyfa )\ Oufe Oufi "\ sing cosh

where 7, 0 are determined by f’(z) = re?. Notice Det DF = |f'(2)|* = r2.
o Fact: f holomorphic = the above F : R2 — R? is smooth.

o Fact: f holomorphic near p = f has an absolutely convergent Taylor seried] at pand f is
equal to its Taylor series near p.

¢ Identity theorem. If f,g : C — C are holomorphic near p, and there is a sequence
p # zp — p with f(z,) = g(2n), then f = g near p.

o f:C — C is a biholomorphism if it is bijective and f, f~! are both holomorphic.
Remark. Since the derivative map is a composition of scaling and rotation, it preserves angles
between vectors. So biholomorphisms are conformal maps, meaning they preserve angles.

¢ Inverse function theorem. For a holomorphic function f : C — C defined near p, if
f'(p) # 0 then f is a local biholomorphism near p.

Ezxplicitly: the theorem hands us a unique holomorphic g : C — C defined near f(p) such that
flg(w)) =w and g(f(z)) = z (for all z,w close enough to p, f(p) respectively).

¢ Riemann mapping theorem. If U # (), C is a simply connected open subset of C then
there is a biholomorphism f : U — D onto the open unit disc D = {z € C: |z] < 1}.

4. DIFFERENTIAL EQUATIONS

o For smooth smooth V' : R” — R", a flowline 7 : [a, b] — R is a solution of 7/(t) = V(y(t)).
Idea: V is a vector field (a vector at each point of R™), v is a curve running in the V -direction.

¢ Theorem. For each point p € R™ there is a flowline v : (—g,e) = R™ of V with v(0) = p,
for small enough € > 0. Moreover, v is smooth, unique and depends smoothlyﬁ on p.

Meaning f'(z) = limp o W exists. Take h = ¢ € R, let t — 0: then f/(z) = 0xf = 0z f1 +10z fa.
Take h =it € iR, let t — 0: f/(z) = —idy f = 8y f2 — i9y f1. Equating gives the Cauchy-Riemann equations.
2302 g an(z — p)™ with an = f() (p)/n!
Meaning: there is a smooth map F : (—e,¢) x U — R", called flow, defined on a small enough neigh-
bourhood U of p (and & > 0 depends on U), such that ¢t — F(t,q) is the flowline of V' through ¢ = F(0, q).
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