Professor Joyce B3.2 Geometry of Surfaces MT 2020 Problem Sheet 2

1. Let $f: X \to Y$ be a holomorphic map of compact connected Riemann surfaces of degree 1.

(i) Show that f has no ramification points.

(ii) Show that f is a homeomorphism.

(iii) Show that f^{-1} is holomorphic.

2. Let $f: X \to Y$ be a nonconstant holomorphic map of compact connected Riemann surfaces, where X is the Riemann sphere. Use the general form of the Riemann-Hurwitz formula to deduce that Y is homeomorphic to X.

3. The Korteweg-de Vries equation which describes shallow water waves is

$$\frac{\partial \phi}{\partial t} + \frac{\partial^3 \phi}{\partial x^3} + 6\phi \frac{\partial \phi}{\partial x} = 0.$$

(i) A solution with a fixed wave form is given by $\phi(x,t) = f(x-ct)$. Show that f satisfies the equation

$$-cf' + f''' + 6ff' = 0.$$

(ii) Using the relation $(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$ find constants a, b such that $f = a\wp + b$ satisfies this equation where \wp is the Weierstrass \wp -function. Can you describe the sort of wave this corresponds to?

4. Let $f : X \to Y$ be a holomorphic map of compact connected Riemann surfaces of degree 2. Show that there is a non-trivial holomorphic homeomorphism $\sigma : X \to X$ such that $f \circ \sigma = f$ and σ^2 is the identity map. How many fixed points does your map have?

P.T.O.

5. (The classification of elliptic curves.) There are bijections

$$\frac{\left\{\begin{array}{c} \text{Riemann surfaces} \\ \text{homeomorphic to a torus} \end{array}\right\}}{\text{biholomorphisms}} \longleftrightarrow \frac{\left\{\begin{array}{c} \text{Quotients} \\ \mathbb{C}/\Lambda \text{ for } \Lambda \text{ a lattice in } \mathbb{C} \end{array}\right\}}{\text{biholomorphisms}} \\ \xleftarrow{\left\{\begin{array}{c} \text{Quotients} \\ \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau) \text{ with } \tau \in \mathbb{H} \end{array}\right\}}{\text{biholomorphisms}} \longleftrightarrow \mathbb{H}/\operatorname{PSL}(2,\mathbb{Z}).$$

Here $\mathbb{H} = \{\tau \in \mathbb{C} : \operatorname{Im} \tau > 0\}$ is the upper half-plane in \mathbb{C} . The second map comes by writing $\Lambda = \langle \omega_1, \omega_2 \rangle_{\mathbb{Z}}$, choosing τ to be whichever of ω_2/ω_1 or $-\omega_2/\omega_1$ lies in \mathbb{H} and noting that $\Lambda = \omega_1 \cdot (\mathbb{Z} + \mathbb{Z}\tau)$ so $\mathbb{C}/\Lambda \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$. The second map is $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau) \leftrightarrow [\tau]$, and $\operatorname{PSL}(2, \mathbb{Z}) = \operatorname{SL}(2, \mathbb{Z})/\{\pm I\}$ acts on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations, that is, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $\operatorname{SL}(2, \mathbb{Z})$ acts by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto (az + b)(cz + d)$.

Although we will not need the following fact, some easy group theory shows that $SL(2,\mathbb{Z})$ is generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. The corresponding Möbius maps S(z) = -1/z and T(z) = z + 1 are rather useful in this exercise.

(a) For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$, show that $\operatorname{Im}(Az) = \frac{1}{|cz+d|^2} \cdot \operatorname{Im}(z)$. Deduce that, given a constant K, only finitely many $c, d \in \mathbb{Z}$ satisfy $\operatorname{Im}(Az) > K$.

(b) Show that $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$ is a topological space homeomorphic to \mathbb{C} , by first showing each point of $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$ has a representative inside the "strip"

$$\{\tau \in \mathbb{H} : |\operatorname{Re}(\tau)| \le 1/2, |\tau| \ge 1\}$$

and then checking that the only remaining identifications are on the boundary of the strip. $^{\rm 1}$

(c) Show that $PSL(2,\mathbb{Z})$ acts freely² on \mathbb{H} except at the points in the $PSL(2,\mathbb{Z})$ -orbits of $e^{\pi i/3}$ and of *i*, and show that the stabilisers of those points are respectively $\mathbb{Z}/3$ and $\mathbb{Z}/2$.

(d) Briefly comment on why the natural local complex coordinate from \mathbb{H} makes $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$ into a Riemann surface except at $e^{\pi i/3}$ and *i*.

¹Hint. Try to maximize the imaginary part for the orbit of z under the action.

²A group G acts freely on X if stabilizers are trivial, explicitly: if $g \bullet x = x$ for some x, then g = 1.