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Introduction

The basic idea of Galois Theory is the following.

Let P (x) ∈ Q[x]. Let α1, . . . , αn ∈ C be the roots of P (x).

Let F := Q(α1, . . . , αn) ⊆ C be the smallest subfield of C, which
contains α1, . . . , αn.

Then we may consider the group

G := {field automorphisms of F}.

By construction, the elements of G permute the αi, and if an
element of G fixes all the roots, then it must be the identity.
Thus there is a natural injection ι : G ↪→ Sn, such that
αι(g)(i) = αg(αi), for i ∈ {1, . . . , n}. In particular, G is finite.



The fundamental insight of É. Galois was that the group
theoretic properties of G provide crucial information on P (x).

For example, the structure of G alone determines whether it is
possible to express the roots of P (x) from its coefficients using a
closed formula containing only polynomial expressions and
extractions of k-th roots (for k ≥ 1). A polynomial with the
latter property is called solvable by radicals.

Using his theory, Galois was then able to answer in the negative
the following age-old question: are there polynomials, which are
not solvable by radicals?

Galois Theory was vastly generalised in the 1950s and 1960s by
A. Grothendieck, who saw it as a special case of what is now
called faithfully flat descent.



Prerequisites and bibliography

A basic reference for this course is the book Galois Theory
(Springer) by J. Rotman.

Another excellent textbook on the topic is Galois Theory
(Routledge, fourth edition) by I.-N. Stewart.

The reader might also want to consult E. Artin’s lectures on
Galois Theory, which are available here:

https://projecteuclid.org/euclid.ndml/1175197041

Prerequisites of the course. Part A course Rings and Modules.
If this course was not attended, the relevant material can be
studied alongside this course.



Rings and domains

A (unitary) ring is a quadruple (R,+, ·, 1, 0), where R is a set, 0
and 1 are elements of R, and + and · are maps

+ : R×R→ R

and
· : R×R→ R

st

- (R,+, 0) is an abelian group;

- (associativity) a · (b · c) = (a · b) · c for all a, b, c ∈ R;

- (distributivity) a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a
for all a, b, c ∈ R;

- 1 · a = a = a · 1 for all a ∈ R.



A ring is commutative, if a · b = b · a for all a, b ∈ R.

If (R,+, ·, 1, 0) and (S,+, ·, 1, 0) are rings, a

ring homomorphism (or ring map)

from (R,+, ·, 1, 0) to (S,+, ·, 1, 0) is a map φ : R→ S, such that
φ(1) = 1 and for all a, b ∈ R,

φ(a · b) = φ(a) · φ(b)

and
φ(a+ b) = φ(a) + φ(b).

There is an obvious notion of subring of a ring (R,+, ·, 1, 0).

From now on, unless explicitly stated otherwise, a ring
will be a commutative ring.

If (R,+, ·, 1, 0) is a ring, we shall mostly use the shorthand R
for (R,+, ·, 1, 0). Also, if r, t ∈ R, we shall often write rt for r · t.



If a ∈ R is an element of a ring, we shall write a−1 ∈ R for the
element st a · a−1 = 1, if it exists (in which case it is unique).

This element is called the inverse of a (if it exists). If a has
inverse, then we say that a is invertible, or is a unit.

A ring is integral (or a domain, or an integral domain) if, for
any a, b ∈ R, the equation a · b = 0 implies that either a = 0 or
b = 0.

If R is a domain, an element r ∈ R\{0} is called irreducible, if
whenever r = r1r2, then either r1 or r2 is a unit.

Example. Z and C[x] are integral domains.



An additive subgroup I ⊆ R of R is called an ideal, if for all
a ∈ R and b ∈ I, we have a · b ∈ I.

If H is a subset of R, then set

(H) := {finite R-linear combinations of elements of H}

is an ideal (exercise), the ideal generated by H.

An ideal, which has the form (r) for some r ∈ R, is called
principal.

If r, t ∈ R, the notation r|t mean t ∈ (r).

If f : R→ S is a ring map, then the subset of R

ker(f) := {r ∈ R | f(r) = 0}

is an ideal of R (exercise).

This ideal is called the kernel of f .

Example. Any ideal of Z is principal.



If I ⊆ R is an ideal, the relation • ≡ • (mod I) on R, st

a ≡ b (mod I) iff a− b ∈ I

is an equivalence relation (verify).

The set of equivalence classes of • ≡ •(mod I) is denoted R/I.

There is a natural map [•]I : R→ R/I sending an element r to
its equivalence class [r]I ∈ R/I, and there is a unique ring
structure on R/I, such that this map is a ring homomorphism.

We shall always implicitly endow R/I with this ring structure.

If f : R→ S is a ring map, then there a unique ring map
f ′ : R/ker(f)→ S, such that f(r) = f ′([r]ker(f)) for all r ∈ R.
Furthermore, f ′ is injective.



An ideal I in a ring R is said to be prime if R/I is a domain.

An ideal I in a ring R is said to be maximal if R/I is a field.

For any ring R, there a unique ring map φ : Z→ R, st

φ(n) = 1 + · · ·+ 1 (n-times)

The characteristic char(R) of R is the unique r ≥ 0, such that
(r) = ker(φ).

If R is a domain, then char(R) is either 0 or a prime number.



Fields

A ring R is a field if (R\{0}, ·, 1) is a commutative group and if
0 6= 1.

Note that the ring R is a field iff all the elements of R\{0} are
invertible.

Proposition-Definition

Let R be a domain. Then there is a field F and an injective
ring map φ : R→ F with the following property.
If φ1 : R→ F1 is a ring map into a field F1, then there is a
unique ring map λ : F → F1 st φ1 = λ ◦ φ.

The field F is thus uniquely determined, up to unique
isomorphism. It is called the field of fractions of F .

One often writes F := Frac(R).



Lemma
(i) Let K be a field and let I ⊆ K be an ideal. Then either
I = (0) or I = K.
(ii) Let K,L be fields and let φ : K → L be a ring map. Then φ
is injective.

Proof. (i) If I 6= (0), then let k ∈ I\{0}. By definition, k−1

exists and since I is an ideal x−1 · x = 1 ∈ I. But K = (1) ⊆ I
and thus I = K.

(ii) Consider ker(φ). If ker(φ) = K then φ(1) = 1 = 0, which is
a contradiction to the fact that L is a field. Thus ker(φ) = (0)
by (i). In particular, φ is injective by the first isomorphism
theorem (see above).

end of lecture 1



Rings of polynomials

Let R be a ring. We shall write R[x] for the ring of polynomials
in the variable x and with coefficients in R.

Let P (x) = adx
d + · · ·+ a1x+ a0 ∈ R[x], where ad 6= 0.

We shall say that P (x) is monic if ad = 1.

The natural number deg(P ) := d is called the degree of P (x).

An element t ∈ R is a root of P (x) if adt
d + · · ·+ a1t+ a0 = 0.

By convention, we set the degree of the 0 polynomial to be −∞.

Notation. If K is a field, then we shall write K(x) for the field
of fractions of K[x].



Lemma
If R is a domain, then so is R[x].

Proof. Let P (x), Q(x) ∈ R[x] and suppose that
P (x), Q(x) 6= 0. Write

P (x) = adx
d + · · ·+ a1x+ a0 ∈ R[x]

and
Q(x) = blx

d + · · ·+ b1x+ b0 ∈ R[x]

with ad, bl 6= 0. Then

P (x) ·Q(x) = (ad · bl)xd+l + . . .

and thus, if P (x) ·Q(x) = 0, then ad · bl = 0 and thus either
ad = 0 or bl = 0, a contradiction.



Proposition (Euclidean division)

Let K be a field. Let f, g ∈ K[x] and suppose that g 6= 0.
Then there are two polynomials q, r ∈ K[x] st

f = gq + r

and deg(r) < deg(g).
The polynomials q and r are uniquely determined by these
properties.



Recall that a Principal Ideal Domain (PID) is a domain, which
has the property, that all its ideals are principal.

A Unique Factorisation Domain (UFD) is a domain R, which
has the following property.

For any r ∈ R\{0}, there is a sequence r1, . . . , rk ∈ R (for some
k ≥ 1), st

(1) all the ri are irreducible;

(2) (r) = (r1 · · · rk);
(3) if r′1, . . . , r

′
k′ is another sequence with properties (1) and (2),

then k = k′ and there is a permutation σ ∈ Sn st (ri) = (r′σ(i))

for all i ∈ {1, . . . , k}.

Corollary

K[x] is a PID, and in particular a UFD.



Note that if R is a domain and r, r′ ∈ R, then (r) = (r′) iff
r = ur′, where u is a unit (exercise).

Applying this to R = K[x], when K is a field, we see that if
f, g ∈ K[x] are two monic polynomials, then (f) = (g) iff f = g.

We conclude from the corollary that for any monic polynomial
f ∈ K[x], there is a sequence of irreducible monic polynomials
f1, . . . , fk, st f = f1 · · · fk.
Moreover, this sequence is unique up to permutation.



Another consequence of Euclidean division is the following.

Corollary

Let K be a field and let f ∈ K[x] and a ∈ K. Then
(i) a is a root of f iff (x− a)|f ;
(ii) there is a polynomial g ∈ K[x], which has no roots, and a
decomposition

f(x) = g(x)

k∏
i=1

(x− ai)mi

where k ≥ 0, mi ≥ 1 and ai ∈ K[x].



We end this section with two useful criteria for irreducibility
(for the proofs, see Rings and Modules).

Lemma (Gauss lemma)

Let f ∈ Z[x]. Suppose that f is monic.
Then f is irreducible in Z[x] iff f is irreducible in Q[x].

Proposition (Eisenstein criterion)

Let

f = xd +

d−1∑
i=0

aix
i ∈ Z[x]

Let p > 0 be a prime number.
Suppose that p|ai for all i ∈ {1, . . . , d− 1} and that p2 6 |a0.

Then f is irreducible in Z[x] (and hence in Q[x]).



Actions of groups on rings

Let R be a ring and let G be a group.

Write AutRings(R) for the group of bijective ring maps
a : R→ R.

An action of G on R is group homomorphism

φ : G→ AutRings(R)

Notation. If γ ∈ G and r ∈ R, we write

γ(r) := φ(γ)(r).

We also sometimes write γr for γ(r). We write RG for the set of
invariants of R under the action of G, ie

RG := {r ∈ R | γ(r) = r ∀γ ∈ G}.



Lemma
Let G act on the ring R.

(i) RG is a subring of R.

(ii) If R is a field, then RG is a field.

Proof. (i) Clearly γ(1) = 1 for all γ ∈ G. Also, if γ(a) = a and
γ(b) = b for some γ ∈ G, then γ(ab) = γ(a)γ(b) = ab and
γ(a+ b) = γ(a) + γ(b) = a+ b. This proves (i).

(ii) Suppose that a 6= 0 and that γ(a) = a for some γ ∈ G.
Then γ(aa−1) = γ(a)γ(a−1) = γ(1) = 1 = aγ(a−1). Thus
γ(a−1) is an inverse of a and must thus coincide with a−1. Since
γ was arbitrary, a−1 ∈ RG. Thus every element of RG has an
inverse, and RG is thus a field.



Let K be a field and let n ≥ 1.

There is a natural action of Sn on K[x1, . . . , xn], given by the
formula

σ(P (x1, . . . , xn)) = P (xσ(1), . . . , xσ(n)).

Definition
A symmetric polynomial is an element of K[x1, . . . , xn]Sn.

Examples. For any k ∈ {1, . . . , n}, the polynomial

sk :=
∑

i1<i2<···<ik

k∏
j=1

xij

is symmetric. For instance, we have

s1 = x1 + · · ·+ xn

and
sn = x1 · · ·xn.



Theorem (Fundamental theorem of the theory of symmetric
functions)

K[x1, . . . , xn]Sn = K[s1, . . . , sn].

Here is a more precise formulation.

Let φ : K[x1, . . . , xn]→ K[x1, . . . , xn] be the map of rings,
which sends xk to sk and which sends constant polynomials to
themselves.

Then

(i) the ring K[x1, . . . , xn]Sn is the image of φ;

(ii) φ is injective.



Proof. We shall sketch the proof of (i). We first introduce the
lexicographic ordering on monomials. We shall write

xα1
1 · · ·x

αn
n

DEF
≤ xβ11 · · ·x

βn
n

if either

- α1 < β1

or

- α1 = β1 and xα2
2 · · ·xαnn ≤ x

β2
2 · · ·x

βn
n .

The lexicographic ordering is similar to the alphabetic ordering
on words.

Now let f be a symmetric polynomial. Let xα1
1 · · ·xαnn be the

largest monomial in f , for the lexicographic ordering. We must
have α1 ≥ α2 ≥ · · · ≥ αn.



To see this, note that, by definition, for any σ ∈ Sn, the
monomial x

ασ(1)
1 · · ·xασ(n)n must also appear in f .

Now suppose for contradiction that α1 < α2.

Apply the permutation σ, which swaps 1 and 2 to xα1
1 · · ·xαnn .

We obtain the monomial xα2
1 xα1

2 · · ·xαnn .

By the above, this polynomial also appears in f and by
definition

xα1
1 · · ·x

αn
n ≤ x

α2
1 xα1

2 · · ·x
αn
n ,

which is a contradiction.

Hence α1 ≥ α2.

Now repeat this reasoning for α2 and α3, α3 and α4, etc.



Now one may compute that the largest monomial in the
polynomial

sα1−α2
1 sα2−α3

2 · · · sαnn
is also xα1

1 · · ·xαnn .

Thus we see that for some c ∈ K, all the monomials in the
polynomial

f − c · sα1−α2
1 sα2−α3

2 · · · sαnn
are strictly smaller than xα1

1 · · ·xαnn for the lexicographic
ordering.

We now repeat all the above reasoning, with

f − c · sα1−α2
1 sα2−α3

2 · · · sαnn

in place of f , and apply induction.



Example.
∑n

i=1 x
2
i = s2

1 − 2s2.

Proposition-Definition

(i) ∆(x1, . . . , xn) :=
∏
i<j(xi − xj)2 ∈ Q[x1, . . . , xn]Sn;

(ii) δ(x1, . . . , xn) :=
∏
i<j(xi − xj) ∈ Q[x1, . . . , xn]An.

Here An ⊆ Sn is the alternating group. This is the subgroup of
permutations with even sign.

The polynomial ∆(x1, . . . , xn) is called the discriminant.

Proof. Clear.

end of lecture 2



Field extensions: definitions

Let K be a field.

A field extension of K, or K-extension, is an injection

K ↪→M

of fields. This gives M the structure of a K-vector space.

Alternate notation: M −K, M |K, M : K. We shall mostly use
the notation M |K.

[M : K] := dimK(M).

[M : K] is called the degree of the extension M |K.

M |K is finite if [M : K] <∞.

A map from the K-extension M |K to the K-extension M ′|K is
a ring map M →M ′ (which is necessarily injective), which is
compatible with the injections K ↪→M and K ↪→M ′.



AutK(M) := group of bijective maps of K-extensions M →M

Proposition (tower law)

If L|M and M |K are finite field extensions, then we have

[M : K] · [L : M ] = [L : K].

Proof. See Rings and Modules.

Let M |K be a field extension and let a ∈M . We define

Ann(a) := {P (x) ∈ K[x] |P (a) = 0}

Ann(a) ⊆ K[x] is called the annihilator of x. It is an ideal of
K[x] (easy).



We say that a is transcendental over K if Ann(a) = (0).

We say that a is algebraic over K if Ann(a) 6= (0).

If a is algebraic over K, then the minimal polynomial ma is by
definition the unique monic polynomial, which generates
Ann(a).

Note. If a is algebraic over K, the Ann(a) is a maximal ideal
and ma is irreducible.

M |K is algebraic if for all a ∈M , the element a is algebraic
over K.

M |K is transcendental if it is not algebraic over K.



Lemma
If M |K is finite, then M |K is algebraic.

Proof.

We prove the contraposition.

Let m ∈M . Suppose that m is transcendental over K.

Then there is an injection of K-vector spaces K[x] ↪→M .

Since K[x] is infinite dimensional, the tower law implies that
[M : K] =∞.



Separability

Let K be a field. Let

P (x) = adx
d + ad−1x

d−1 + · · ·+ a0 ∈ K[x].

We define

P ′(x) =
d

dx
P (x) := dadx

d−1 + (d− 1)ad−1x
d−2 + · · ·+ a1.

Here d− i is understood as 1K + · · ·+ 1K ((d− i) - times).

The operation P (x) 7→ P ′(x) is a K-linear map from K[x] to
K[x] and it satisfies the ”Leibniz rule”:

d

dx
(P (x)Q(x)) =

d

dx
(P (x))Q(x) + P (x)

d

dx
Q(x)

(see exercises).



We say that P (x) has no multiple roots if (P (x), P ′(x)) = (1).

Otherwise, we say that P (x) has multiple roots.

Note the following fact, which justifies the terminology.

If
P (x) = (x− ρ1)(x− ρ2) · · · (x− ρd)

then P (x) has multiple roots iff there are i, j ∈ {1, . . . , d} such
that i 6= j and ρi = ρj .

See the exercises for this (use the Leibniz rule).



Let L|K be a field extension. Let P (x), Q(x) ∈ K[x].

Write gcdL(P (x), Q(x)) for the greatest common divisor of
P (x) and Q(x) viewed as polynomials with coefficients in L.

Lemma

gcd(P (x), Q(x)) = gcdL(P (x), Q(x)).

Proof. This follows from the fact that a generator of
(P (x), Q(x)) can be computed using Euclidean division. See the
notes.

Corollary (of Lemma 2)

P (x) has multiple roots as a polynomial with coefficients in K

⇔

P (x) has multiple roots as a polynomial with coefficients in L.

Proof. Apply the lemma to Q(x) = P ′(x).



Lemma
Let P (x), Q(x) ∈ K[x] and suppose that Q(x)|P (x). Suppose
that P (x) has no multiple roots. Then Q(x) has no multiple
roots.

Proof. Let T (x) ∈ K[x] be st Q(x)T (x) = P (x). Then by the
Leibniz rule, we have

(P, P ′) = (Q′T +QT ′, QT ) = (1)

If now Q and Q′ were both divisible by a polynomial W (x) with
positive degree, then so would be Q′T +QT ′ and QT , a
contradiction.



Let K be a field.

Lemma
Suppose that P (x) ∈ K[x]\{0}. Suppose that char(K) does not
divide deg(P ) and that P (x) is irreducible. Then (P, P ′) = (1).

Proof. Let

P (x) = adx
d + ad−1x

d−1 + · · ·+ a0

where ad 6= 0. By definition, we have

P ′(x) = dadx
d−1 + (d− 1)ad−1x

d−2 + · · ·+ a1.

By assumption (d, char(K)) = (1) and so d 6= 0K in K. Thus
P ′(x) 6= 0.

Since P is irreducible and deg(P ′) < deg(P ) we have
(P, P ′) = (1).



P (x) ∈ K[x]\{0} is separable if all the irreducible factors of
P (x) have no multiple roots.

From the above, we see that this notion is invariant under field
extension.

Note that according to the last Lemma, an irreducible
polynomial with coefficients in K, whose degree is prime to the
characteristic of K, is separable.

In particular, if char(K) = 0, then any irreducible polynomial
with coefficients in K is separable.



Definition
Let L|K be an algebraic field extension.
L|K is said to be separable if the minimal polynomial over K of
any element of L is separable.

Note that if K is a field and char(K) = 0, then all the algebraic
extensions of K are separable. This follows from the last
remark.

Lemma
Let M |L and L|K be algebraic field extensions. Suppose M |K
is separable. Then M |L are L|K and both separable.

Proof. See the notes.



Example of a finite extension, which is not separable.

Let K := F2(t), where F2 = Z/2Z is the field with two elements.

Let P (x) := x2 − t. Since P (x) is of degree 2 and has no roots
in K (show this), it is irreducible.

Let L := K[x]/(P (x)). Since P (x) is irreducible, L is a field.

On the other hand, P ′(x) = 0 so (P ′, P ) = (P ) 6= (1).

Now P (x) is the minimal polynomial of

x (mod P (x)) ∈ K[x]/(P (x)) = L.

Hence the extension L|K is not separable.

end of lecture 3



Simple extensions

Let ι : K ↪→M be a field extension and let S ⊆M be a subset.

We define
K(S) :=

⋂
L a field, L⊆M,L⊇S,L⊇ι(K)

L

K(S) is the field generated by S over K and the elements of S
are called generators of K(S) over K.

The field extension M |K is the composition of the natural field
extensions K(S)|K and M |K(S).

Note the following elementary fact. If S = {s1, . . . , sk}, then

K(S) = K(s1)(s2) . . . (sk)

We say that M |K is a simple extension if there is m ∈M , such
that M = K(m).



Examples.

• Let K = Q and let M = Q(i,
√

2) be the field generated by i
and
√

2 in C.

Then M is a simple algebraic extension of K = Q, generated by
i+
√

2.

• Let M = Q(x) = Frac(Q[x]) and let K = Q.

Then M is a simple transcendental extension of K, generated
by x (note that x is transcendental over Q).



Proposition

Let M = K(α)|K be a simple algebraic extension. Let P (x) be
the minimal polynomial of α over K. Then there is a natural
isomorphism of K-extensions

K[x]/(P (x)) 'M

sending x to α.

Proof. The existence of the map follows from the definitions.

Since P (x) 6= 0, (P (x)) is a maximal ideal.

Thus the image of K[x]/(P (x)) in M is a field.

By the definition of M , this field must be all of M .

Note. We have [M : K] = deg(P ).

The proposition also shows that a finitely generated algebraic
extension is finite.



The last proposition also implies the following.

Let M = K(α)|K be a simple algebraic extension.

Let P (x) be the minimal polynomial of α over K.

Let K ↪→ L be an extension of fields.

Let P (x) be the minimal polynomial of α over K.

Then the maps of K-extensions M ↪→ L are in
1− 1-correspondence with the roots of P (x) in L.



Example.

Let M := Q(i) ⊆ C and let K = Q.

Let L := Q(
√

2) ⊆ C. Then there is no map of K-extensions
M ↪→ L, because the roots of x2 + 1 are ±i, which do not lie in
L ⊆ R.

If L = C, and M and K are as above, then there are two maps
of K-extensions M ↪→ L, which correspond to the two roots of
x2 + 1 in C.



Splitting fields

Let K be a field and let P (x) ∈ K[x].

We say that P (x) splits in K, if for some c ∈ K, and some
sequence {ai ∈ K}i∈{1,...,k}, we have

P (x) = c ·
k∏
i=1

(x− ai)

Example. x2 + 1 = (x− i)(x+ i) splits in C but (famously!)
not in R.

Note. If P (x) ∈ K[x] is irreducible and deg(P ) > 1 then P (x)
has no roots in K, and in particular P (x) does not split in K.



A field extension M |K is a splitting extension (or, less precisely,
a splitting field) for P ∈ K[x], if

(i) P (x) splits in M ;

(ii) M is generated over K by the roots of P (x) in M .

Theorem
Let P (x) ∈ K[x]. Then

(i) There exists a field extension M |K, which is a splitting
extension for P (x).

(ii) If L|K is a splitting extension for P (x), then L and M are
isomorphic as K-extensions.

(iii) Let L|K be a splitting extension for P (x) and let J |K be
any K-extension. Then the images of all the maps of
K-extensions L ↪→ J coincide.

See the notes for the proof.

Note that the isomorphism announced in (ii) is not canonical.

end of lecture 4



Normal extensions

An algebraic extension L|K is normal if the minimal
polynomial over K of any element of L splits in L.

Examples.

(1) The extension Q( 3
√

2)|Q is not normal.

Indeed, the minimal polynomial of 3
√

2 is x3 − 2. On the other
hand Q( 3

√
2) ⊆ R and x3 − 2 has non real roots, so it does not

split Q( 3
√

2).

(2) The extension Q(
√

2)|Q is normal.

Let a ∈ Q(
√

2) and let ma(x) ∈ Q[x] be its minimal polynomial.
Since [Q(

√
2) : Q] = 2, we have deg(ma(x)) ≤ 2. On the other

hand ma(x) has a root in Q(
√

2), and any polynomial of degree
≤ 2, which has a root, splits. Hence ma(x) splits in Q(

√
2).



Let M = K(α1, . . . , αk)|K be an algebraic field extension.

Let J |K be an extension in which the polynomial

k∏
i=1

mαi(x) ∈ K[x]

splits.

Lemma (crucial!)

There is a map of K-extensions M → J . Furthermore, the
number of maps of K-extensions M → J is finite. Finally, if
the polynomials mαi are all separable, then there are [M : K]
such maps.

In other words: the set of extensions of the map K ↪→ J to a
ring map M ↪→ J is finite and non empty, and if all the mαi are
separable, then this set has cardinality [M : K].



Proof. We shall only prove the first assertion here.

By the properties of simple extensions, there is an extension of
the map K ↪→ J to K(α1).

Now note that the minimal polynomial of α2 over K(α1)
divides mα2(x); it thus has a root in J , since mα2(x) splits in J .

Thus we conclude again that for any ring map K(α1) ↪→ J ,
there is an extension of this map to a map

K(α1)(α2) = K(α1, α2) ↪→ J.

Continuing this way, we see that there is an extension of the
map K ↪→ J to a ring map K(α1, . . . , αk) = M ↪→ J .



Theorem
A finite field extension L|K is normal iff it is a splitting
extension for a polynomial with coefficients in K.

Proof. Suppose that L|K is finite and normal. Let α1, . . . , αk
be generators for L over K (eg a K-basis). Let

P (x) :=

k∏
i=1

mαi(x)

where mαi(x) is the minimal polynomial of αi over K.

Then, by assumption, P (x) splits in L and the roots of P (x)
generate L, so L is a splitting field of P (x).



Suppose now that L is a splitting field of a polynomial in K[x].

Let α ∈ L and let β1, . . . , βk ∈ L be st L = K(α, β1, . . . , βk).

Let J be a splitting field of the product of the minimal
polynomials over K over the elements α, β1, . . . , βk.

Now choose a root ρ in J of the minimal polynomial Q(x) of α
over K. By the properties of simple extensions, there is an
extension of the map K ↪→ J to a ring map µ : K(α) ↪→ J such
that µ(α) = ρ.

Notice that by the crucial Lemma there is an extension of µ to
a ring map λ : L ↪→ J . Now note that by the properties of
splitting extensions, the image by λ of L in J is independent of
λ, and thus of µ.

Hence the image by λ of L in J contains all the roots of Q(x),
ie Q(x) splits in the image of λ. Since Q(x) has coefficients in
K and λ gives an isomorphism between L and the image of λ,
we see that Q(x) splits in L, which is what wanted to prove.



Theorem
Let L|K be the splitting field of a separable polynomial over K.
Then we have #AutK(L) = [L : K].

Proof. Apply the crucial Lemma with L = M = J .



Theorem
Let ι : K ↪→ L be a finite field extension.

Then AutK(L) is finite.

Furthermore, the following statements are equivalent:

(i) ι(K) = LAutK(L));

(ii) L|K is normal and separable;

(iii) L|K is a splitting extension for a separable polynomial with
coefficients in K.



Proof. We shall only prove (i)⇒(ii) .

The fact that AutK(L) is finite is a consequence of the second
assertion in the crucial Lemma.

Let P (x) be the minimal polynomial of the element α ∈ L.

We have to show that P (x) splits and is separable.

Let
Q(x) :=

∏
β∈Orb(α,AutK(L))

(x− β)

By construction, Q(x) is separable. Let

d := #Orb(α,AutK(L)).

Let β1, . . . , βd be the elements of Orb(α,AutK(L)).



We have

Q(x) = xd − s1(β1, . . . , βd)x
d−1 + · · ·+ (−1)dsd(β1, . . . , βd)

Now note that for any γ ∈ AutK(L)) and any i ∈ {1, . . . , d}, we
have

γ(si(β1, . . . , βd)) = si(γ(β1), . . . , γ(βd))

Since si is a symmetric function, we have

si(γ(β1), . . . , γ(βd)) = si(β1, . . . , βd).

Since γ was arbitrary, we see that si(β1, . . . , βd) ∈ LG = ι(K).

Thus Q(x) ∈ ι(K)[x] and (abusing language), we identify with a
polynomial in K[x] via ι.

On the other hand α ∈ Orb(α,AutK(L)) so that Q(α) = 0.

Thus, by the definition of P (x), we see that P (x) divides Q(x).

Hence P (x) splits in L and has no multiple roots.

In particular, P (x) is separable.



Corollary

Let L|K be an algebraic field extension.

Suppose that L is generated by α1, . . . , αk ∈M and that the
minimal polynomial of each αi is separable.

Then the extension L|K is separable.

Proof. According to the crucial Lemma and the existence of
splitting fields, there is an extension M |L st the extension M |K
is the splitting field of a separable polynomial.

According to the previous theorem, the extension M |K is
separable.

Thus the extension L|K is also separable.
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Galois extensions - overview

A field extension ι : K ↪→ L is called a Galois extension, if

LAutK(L) = ι(K).

Note. By the above, a finite field extension L|K is a Galois
extension iff L is the splitting field of a separable polynomial
over K and iff it is normal and separable.

If L|K is a Galois extension, we write

Gal(L|K) = Γ(L|K) := AutK(L)

and we call Gal(L|K) the Galois group of L|K. If L|K is a
finite, then this is a finite group.



Fundamental theorem of Galois theory (to be proven later in a
more detailed form).

The map

{subfields of L containing ι(K)} 7→ {subgroups of Gal(L|K)}

given by
M 7→ Gal(L|M)

is a bijection.



Example. We shall compute the Galois group of the extension
Q(
√

2, i)|Q.

Note that Q(
√

2, i) is the splitting field of the polynomial
(x2 − 2)(x2 + 1), whose roots are ±

√
2,±i.

Thus Q(
√

2, i)|Q is the splitting field of a separable polynomial,
and is thus Galois.

We have successive extensions Q(
√

2, i)|Q(
√

2)|Q.

The minimal polynomial of
√

2 over Q is x2 − 2.

Similarly, the polynomial x2 + 1 is the minimal polynomial of i
over Q(

√
2).

Thus we conclude that

[Q(
√

2, i) : Q] = 2 · 2 = 4.

By the theorem above, we thus have

#Gal(Q(
√

2, i)|Q) = 4.



Let G := Gal(Q(
√

2, i)|Q).

From the classification of finite groups, we conclude that G is
abelian.

Thus we either have G ' Z/2Z× Z/2Z or G = Z/4Z.

Now note that we have #Gal(Q(
√

2, i)|Q(i)) = 2.

Similarly, #Gal(Q(
√

2, i)|Q(
√

2)) = 2.

Thus
Gal(Q(

√
2, i)|Q(i)) ' Z/2Z

and
Gal(Q(

√
2, i)|Q(

√
2)) ' Z/2Z.

By the fundamental theorem of Galois theory, the subgroups
Gal(Q(

√
2, i)|Q(

√
2)) ⊆ G and Gal(Q(

√
2, i)|Q(i)) ⊆ G cannot

coincide, because they correspond to different subfields of
Q(
√

2, i).

Thus we conclude that G has two distinct subgroups of order 2,
and hence we must have G ' Z/2Z× Z/2Z.



Examples of field extensions, which are not Galois.

(i) We saw that Q( 3
√

2)|Q is not a normal extension. Thus it is
not Galois.

(ii) Consider the extension F2(t)[x]/(x2 − t)|F2(t). We saw that
this extension is not separable. Thus it is not Galois.
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Artin’s lemma

The following basic statement is the linchpin of the whole
theory.

Theorem (Artin’s lemma)

Let K be a field and let G ⊆ AutRings(K) be a finite subgroup.

Then the extension K|KG is a finite Galois extension, and the
inclusion G ↪→ AutKG(K) is an isomorphism of groups.

We will sketch the proof. We will need the

Lemma
Let K be a field and let G ⊆ AutRings(K) be a finite subgroup.
Then [K : KG] ≤ #G.

Proof. See the notes. The proof is by linear algebra.



We are now in a position to prove Artin’s lemma. We shall first
prove that

KG = (K)Aut
KG

(K).

By definition, we have

KG ⊆ (K)Aut
KG

(K)

and
G ⊆ AutKG(K),

so that KG ⊇ (K)Aut
KG

(K).

We conclude that KG = (K)Aut
KG

(K), as required.



Now, since K|KG is a finite extension by the last lemma, we
conclude that K|KG is a splitting extension of a separable
polynomial with coefficients in KG.

We may thus conclude that

[K : KG] = #AutKG(K).

On the other hand, we know from the last lemma that
[K : KG] ≤ #G, so that #AutKG(K) ≤ #G.

Since G ⊆ AutKG(K), we also have #G ≤ #AutKG(K), and we
conclude that #G = #AutKG(K).

This implies that G = AutKG(K).

We conclude that K|KG is a finite Galois extension with Galois
group G.
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The fundamental theorem of Galois theory

Let ι : K ↪→ L be a field extension.

We shall call a subfield of L containing ι(K) an intermediate
field.

(i) The map

{subfields of L containing ι(K)} 7→ {subgroups of Gal(L|K)}

given by
M 7→ Gal(L|M)

is a bijection. Its inverse is given by the map

H 7→ LH .

(where H is a subgroup of Gal(L|K)).

We shall write GM := Gal(L|M).



(ii) Let M be a subfield of L containing ι(K). We have

[L : M ] = #GM

and

[M : K] =
#Gal(L|K)

#GM
.



(iii) Let M be a subfield of L containing ι(K).

Then M |K is a Galois extension iff the group GM is a normal
subgroup of Gal(L|K).

If that is the case, there is an isomorphism

IM : Gal(L|K)/GM ' Gal(M |K),

which is uniquely determined by the fact that

IM (γ (mod GM )) = γ|M

for any γ ∈ Gal(L|K).

Here γ|M is the restriction of γ to M and it is part of the
statement that γ(M) = M .



For the proof of the fundamental theorem of Galois theory, see
the notes.

Corollary

Let ι : K ↪→ L be a finite separable extension.

Then there are only finitely many intermediate fields between L
and ι(K).

Proof. We may wrog replace L by one of its extensions.

By the crucial lemma, we may thus suppose that the extension
L|K is a Galois extension.

In that case, the statement is a consequence of (i) above and
the fact that Gal(L|M) is finite (and thus has finitely many
subgroups).

end of lecture 8



We record the following important lemma.

Lemma
Let L|K be a finite Galois extension. Let α ∈ L.

Then the minimal polynomial of α over K is the polynomial∏
β∈Orb(α,Gal(L|K))

(x− β)

We shall go through the proof in the next slides.



Let P (x) =
∏
β∈Orb(α,Gal(L|K))(x− β).

Let mα(x) ∈ K be the minimal polynomials of α over K. We
saw above that P (x) ∈ K[x].

Thus, by the definition of the minimal polynomial, we have

mα(x)|P (x).

So we only need to prove that P (x) is irreducible over K.

Suppose for contradiction that P (x) is not irreducible and let

P (x) = Q(x)T (x),

where Q(x), T (x) ∈ K[x] and deg(Q),deg(T ) > 1.



Note that if ρ ∈ L and Q(ρ) = 0, then for any γ ∈ Gal(L|K), we
have

γ(Q(ρ)) = Q(γ(ρ)) = γ(0) = 0

and thus the roots of Q(x) in L are stable under the action of
Gal(L|K).

Now note that Q(x) has a root in L, since P (x) splits in L and
Q(x)|P (x).

Thus the set of the roots of P (x) contains a subset, which is
stable under Gal(L|K) and has cardinality strictly smaller than
deg(P (x)) = #Orb(α,Gal(L|K)).

This contradicts the fact that the set of roots of P (x) is the
orbit of α under Gal(L|K).



Let n ≥ 1. A finite subgroup G of Sn is called transitive if it has
only one orbit in {1, . . . , n}.

Lemma (proven in the notes)

Let K be a field and let P (x) ∈ K[x]. Let L|K be a splitting
extension of P (x) and let α1, . . . , αn ∈ L be the roots of P (x),
with multiplicities.

(1) Suppose that P (x) has no repeated roots. Let
φ : AutK(L)→ Sn be the map st γ(αi) = αφ(γ)(i) for all
i ∈ {1, . . . , n}. Then φ is an injective group homomorphism.

(2) If P (x) is irreducible over K and has no repeated roots, then
the image of φ is a transitive subgroup of Sn.

(3) The element ∆P := ∆(α1, . . . , αn) lies in K and depends
only on P (x).

(4) Suppose that char(K) 6= 2. Suppose that P (x) has no
repeated roots. Then the image of φ lies inside An ⊆ Sn iff
∆P ∈ (K∗)2.



Example. In the first exercise sheet, it is shown that

∆(x1, x2, x3) = −4s3
1s3 + s2

1s
2
2 + 18s1s2s3 − 4s3

2 − 27s2
3

(where the si are the symmetric functions in 3 variables).

Now let P (x) = x3 − x− 1
3 ∈ Q[x].

The polynomial P (x) has no roots in Q (exercise) and it thus
irreducible over Q.

In particular, it has no multiple roots, since char(Q) = 0.

Let L|Q be a splitting field for P (x) and let α1, α2, α3 be the
roots of P (x) in L.

We have
s3(α1, α2, α3) = −1/3,

s2(α1, α2, α3) = −1

and
s1(α1, α2, α3) = 0.



In particular,

∆P = −4s2(α1, α2, α3)3 − 27s3(α1, α2, α3)2 = 4− 27

9
= 1

Thus ∆P ∈ (Q∗)2.

We conclude from the lemma above that Gal(L|Q) can be
realised as a subgroup of A3.

We know that Gal(L|Q) has at least order 3 because the
extension K(αi)|Q has degree 3 for any αi.

Since #A3 = 3, we conclude that Gal(L|Q) ' A3.



The theorem of the primitive element

Theorem
Let L|K be a finite separable extension of fields. Then there is
an element α ∈ L st L = K(α).

Proof. We suppose that K is an infinite field.

The case of a finite field is treated in the exercises.

Since L is a finite extension of K, L is generated over K by a
finite number of elements.

By induction on the number of generators, it will be sufficient
to prove that L is generated by one element if it is generated by
two elements.

So suppose that L = K(β, γ).

For d ∈ K, we consider the intermediate field K(β + dγ).

By the corollary above, there are only finitely many
intermediate fields.



Since K is infinite, we may thus find d1, d2 ∈ K such that
d1 6= d2 and K(β + d1γ) = K(β + d2γ).

There is thus P (x) ∈ K[x] st β + d1γ = P (β + d2γ).

Thus we have

γ =
P (β + d2γ)− (β + d2γ)

d1 − d2

and

β = (β + d2γ)− d2
P (β + d2γ)− (β + d2γ)

d1 − d2

and in particular

K(β, γ) = K(β + d2γ).
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Cyclotomic extensions

Let n ≥ 1. For any field E, define

µn(E) := {ρ ∈ E | ρn = 1}.

Note that the set µn(E) inherits a group structure from E∗.

The elements of µn(E) are called the n-th roots of unity (in E).

Lemma
The group µn(E) is a finite cyclic group.

Proof. Exercise.



We shall call an element ω ∈ µn(E) a primitive n-th root of
unity if it is a generator of µn(E).

Note that if ω is a primitive n-th root of unity, then all the
other primitive n-th roots of unity are of the form ωk, where k
is an integer prime to #µn(E).



We will also need the

Lemma
Let G be a finite cyclic group.

Write the group law of G multiplicatively.

Let k := #G.

Let I : (Z/kZ)∗ → AutGroups(G) be the map given by the
formula

I(a (mod k))(γ) = γa

for any a ∈ Z and γ ∈ G.

Then I is an isomorphism.

Proof. Exercise.



Let now K be a field and suppose that (n, char(K)) = (1).

Let L be a splitting field for the polynomial xn − 1 ∈ K[x].

Note that xn − 1 has no repeated roots, because

d

dx
(xn − 1) = nxn−1 6= 0.

Thus #µn(L) = n and L|K is a Galois extension.

In particular, since µn(L) ' Z/nZ by the lemma above, we see
that there are #(Z/nZ)∗ = Φ(n) primitive n-th roots of unity
in L.

Here Φ(•) is Euler’s totient function.



Let
Φn,K(x) :=

∏
ω∈µn(E), ω primitive

(x− ω)

Note that deg(Φn,K(x)) = Φ(n).

Lemma
The polynomial Φn,K(x) has coefficients in K and depends only
on n and K.

Proof. The coefficients of Φn,K(x) are symmetric functions in
the primitive n−th roots.

Since the primitive n-roots are permuted by Gal(L|K), the
coefficients are thus invariant under Gal(L|K), and thus lies in
K.

The polynomial Φn,K(x) ∈ K[x] only depends on n and K,
because all the splitting K-extensions for xn − 1 are
isomorphic.



Proposition

(i) There is a natural injection of groups

φ : Gal(L|K) ↪→ AutGroups(µn(L)).

(ii) The map φ is surjective iff Φn,K(x) is irreducible over K.

Proof. (i) is clear, since µn(L) generates L and Gal(L|K) acts
on L by ring automorphisms.

(ii) Let ω ∈ µn(L) be a primitive n-th root of unity.

Suppose that Φn,K(x) is irreducible over K.

Since Φn,K(x) annihilates ω, it must be the minimal polynomial
of ω.



Hence [L : K] ≥ Φ(n), and thus we have #Gal(L|K) ≥ Φ(n).

On the other hand #Gal(L|K) ≤ Φ(n) by (i) and the lemma
above.

Hence #Gal(L|K) = Φ(n) and we may conclude from (i) that φ
is surjective.

Now suppose that φ is surjective.

Then the minimal polynomial of ω is Φn,K(x) by the lemma
above and the lemma after the fundamental theorem.



We also record the following important result.

Proposition

The polynomial Φn,Q(x) is irreducible and has coefficients in Z.

Proof. See the notes. Uses reduction modulo p.
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Kummer extensions

Let K be a field and let n be a positive integer with
(n, char(K)) = (1). Suppose that xn − 1 splits in K.

Let a ∈ K and let M |K be a splitting extension for the
polynomial xn − a.

Note that d
dx(xn − a) = nxn−1. Since (xn − a, nxn−1) = (1), we

see that xn − a is a separable polynomial.

Hence M |K is a Galois extension.

Such an extension is called a Kummer extension.



Lemma
Let ρ ∈ L be st that ρn = a.

There is a unique group homomorphism

φ : Gal(M |K)→ µn(K)

st that
φ(γ) = γ(ρ)/ρ.

This map does not depend on the choice of ρ and it is injective.

Proof. Elementary. See the notes.

Note also that a Kummer extension M |K as above is a simple
extension, generated by any root of xn − a.



The following theorem is a kind of converse to the previous
Lemma.

Theorem. Let K be a field and let n be a positive integer with
(n, char(K)) = (1).

Suppose that xn − 1 splits in K.

Suppose that L|K is a Galois extension and that Gal(L|K) is a
cyclic group of order n.

Let σ ∈ Gal(L|K) be a generator of Gal(L|K) and let ω ∈ K is
a primitive n-th root of unity in K.

For any α ∈ L let

β(α) := α+ ωσ(α) + ω2σ2(α) + · · ·+ ωn−1σn−1(α).

Then:

• for any α ∈ L, we have β(α)n ∈ K;

• if β(α) 6= 0, then L = K(β) (so that L is the splitting field of
xn − β(α)n);

• there is an α ∈ L, such that β(α) 6= 0.



For the proof, we shall need a general result on characters of
groups with values in multiplicative groups of fields.

Let E be a field. Let H be a group (not necessarily finite). A
character of H is a group homomorphism H → E∗.

Proposition (Dedekind)

Let χ1, . . . , χk be distinct characters of H with values in E∗.

Let a1, . . . , ak ∈ E and suppose that

a1χ1(h) + · · ·+ akχk(h) = 0

for all h ∈ H. Then a1 = a2 = · · · = ak = 0.

Proof. By induction on k. See the notes.



Proof. (of the Theorem). Let α ∈ L. We compute

σ(β(α))

= σ(α) + ωσ2(α) + ω2σ3(α) + · · ·+ ωn−1α

= ωn−1β(α) = ω−1β(α).

We deduce from this that for any integer i, we have

σi(β(α)) = ω−iβ(α).

Furthermore, we then have

σ(β(α)n) = σ(β(α))n = ω−nβ(α)n = β(α)n

and thus β(α)n ∈ K.

Now note that any element of Gal(L|K) defines a character on
L∗ with values in L∗.

We conclude from Dedekind’s lemma that that there is α ∈ L∗
st β(α) 6= 0.



Suppose that α ∈ L∗ and that β(α) 6= 0 from now on.

Let a := βn. Since the ω−iβ are all roots of xn − a, we have
shown that xn − a splits in L.

Furthermore, we have shown above that Gal(L|K) acts
faithfully and transitively on the roots of xn − a.

Thus xn − a is irreducible over K.

Hence [K(β) : K] = n = [L : K].

Thus L = K(β) and L is a splitting field for xn − a.
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Solvable groups

Definition. Let G be a group.

A finite filtration of G is finite ascending sequence G• of
subgroups

0 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

such that Gi is normal in Gi+1 for all i ∈ {0, . . . , n− 1}.
The number n is called the length of the finite filtration.

The finite filtration G• is said to have no redundancies if
Gi 6= Gi+1 for all i ∈ {0, . . . , n− 1}.
The finite filtration G• is said to have abelian quotients if the
quotient group Gi+1/Gi is an abelian group for all
i ∈ {0, . . . , n− 1}.
Finally, the finite filtration G• is said to be trivial if n = 1.

Note that that (trivially...) the trivial filtration always exists
and is unique.



Definition
A group is said to be solvable if there exists a finite filtration
with abelian quotients on G.

Recall also that a group G is simple if it has no non trivial
normal subgroups.

Lemma
Let G be a solvable group and let H be a subgroup. Then H is
solvable. If H is normal in G, then the quotient group G/H is
also solvable.

Proof. See the notes.



Definition
The length length(G) of a finite group G is the quantity

sup{n ∈ N |n is the length of a finite filtration with no redundancies of G}

Note that the length of a finite group is necessarily finite,
because the length cannot be larger than #G.

Lemma
Suppose that G is a finite solvable group and let G• be finite
filtration with no redundancies of length length(G) on G.

Then for all i ∈ {0, . . . , length(G)− 1}, the group Gi+1/Gi is a
cyclic group of prime order.

Proof. See the notes.



Examples.

- abelian groups are solvable (by definition);

- the group S3 is solvable. The ascending sequence

0 ⊆ A3 ⊆ S3

is a finite filtration of S3, with quotients A3/0 ' A3 ' Z/3Z
and S3/A3 ' Z/2Z.

- the group S4 is also solvable but the groups A5 and S5 are not
solvable. The group A5 is in fact simple and non abelian (and
thus only has a trivial finite filtration). By the above, this
implies that Sn is not solvable for all n ≥ 5.
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Solvability by radicals

Let L|K be a finite field extension.

Definition
The extension L|K is said to be radical if L = K(α1, . . . , αk)
and there are natural numbers n1, . . . , nk such that αn1

1 ∈
K, αn2

2 ∈ K(α1), αn3
3 ∈ K(α1, α2), . . . , αnkk ∈ K(α1, . . . , αk−1).

We see from the definition that if L|K and M |L are radical
extensions, then M |K is a radical extension.

Example. Kummer extensions are radical. This fact will play
an essential role below.



Theorem. Suppose that char(K) = 0.

Let L|K be a finite Galois extension.

(a) If Gal(L|K) is solvable then there exists a finite extension
M |L with the following properties.

(1) The composed extension M |K is Galois.

(2) There is a map of K-extensions K(µ[L:K]) ↪→M .

(3) M is generated by the images of L and K(µ[L:K]) in M .

(4) The extension M |K(µ[L:K]) is a composition of Kummer
extensions. In particular M |K is a radical extension.

(b) Conversely, if there exists a finite extension M |L such that
the composed extension M |K is radical, then Gal(L|K) is
solvable.



Proof. We shall outline the proof of (a). For the proof of (b),
see the notes. Let d := [L : K].

First note that there exists a Galois extension of K and maps of
K-extensions K(µd) ↪→ J and L ↪→ J .

This follows from the existence of splitting extensions and the
crucial Lemma.

Let P be the field generated by L and K(µd) in J .

By construction, we then have the following diagram of field
extensions:

P

L

??

K(µd)

bb

K

<<__



Now note that the extension P |K(µd) is Galois and that the
restriction map Gal(P |K(µd))→ Gal(L|K) is injective.

Indeed if σ ∈ Gal(P |K(µd)) restricts to IdL on L, then σ fixes
K(µd) and L. Thus σ must fix all of P , since P is generated by
L and K(µd) over K.

We now prove (a). Suppose that Gal(L|K) is solvable. We
conclude from the above that Gal(P |K(µd)) is solvable.

In other words, there is a finite filtration with abelian quotients

0 = H0 ⊆ H1 ⊆ · · · ⊆ Hn = Gal(P |K(µd)).

By the above, we may assume that the quotients of this
filtration are cyclic.



By the fundamental theorem of Galois theory, the subgroups Hi

correspond to a decreasing sequence of subfields of P

P = Pn ⊇ Pn−1 ⊇ · · · ⊇ P1 ⊇ P0 = K(µd)

such that Pi+1|Pi is a Galois extension for any i ∈ {0, . . . , n−1}.
Furthermore, we then have Gal(Pi+1|Pi) ' Hi+1/Hi so that
Gal(Pi+1|Pi) is cyclic.

Now note that by Lagrange’s theorem, #(Hi+1/Hi) is a divisor
of #Gal(P |K(µd)), and thus of #Gal(L|K) = d.

Thus the polynomial x#Gal(Pi+1|Pi) − 1 splits in K(µd).

By Kummer theory, this implies that Pi+1|Pi is a Kummer
extension, and so in particular a radical extension.

We conclude from this that P |K(µd) is a radical extension.

Also, note that K(µd)|K is clearly a radical extension.

Thus P |K is a radical extension, being a composition of radical
extensions.



Corollary

Let n ≥ 5 and let K is a field. The extension

K(x1 . . . , xn)|K(x1 . . . , xn)Sn

is not radical.

Here we consider the action of Sn on K(x1 . . . , xn), which is the
action induced by the action of Sn on K[x1 . . . , xn].

Proof. Note that the extension K(x1 . . . , xn)|K(x1 . . . , xn)Sn is
a Galois extension by Artin’s lemma.

On the other hand, we saw that the group Sn is not solvable for
n ≥ 5.

By the previous theorem, the extension cannot be radical.
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The solution of the general cubical equation

We shall now illustrate the previous Theorem in a specific
situation.

Let K be a field and suppose that char(K) = 0. We wish to
solve the cubical equation

y3 + ay2 + by + c = 0

where a, b, c ∈ K. Letting x = y + a
3 , we obtain the equivalent

equation
x3 + px+ q = 0 (1)

where

p = −1

3
a2 + b

and

q =
2

27
a3 − 1

3
ab+ c.



Let P (x) := x3 + px+ q.

We want to find a formula for the roots of P (x) in terms of the
elements p, q, which arises as an iteration of the following
operations:

- multiplication by an element of K

- multiplication, addition

- extraction of 2nd and 3rd roots (ie
√
• and 3

√
•).



Let L|K be a splitting extension for P (x).

Let ω ∈ K(µ3) be a primitive 3rd root of unity.

By the crucial lemma and the existence of splitting extensions
there is a finite Galois extension J |K and maps of K-extensions
L ↪→ J and K(µ3) = K(ω) ↪→ J .

Let M = L(ω) be the field generated in J by the images of L
and K(ω) in J .



The situation is summarised by the following commutative
diagram of field extensions

M

L

??

K(µ3)

cc

K

;;__

Now Gal(L|K) is a solvable (because it can be realised as a
subgroup of S3) and as before we see that M |K is radical.

The calculations below exploit (and reprove) precisely this fact.



Consider the sequence of extensions

K ↪→ K(ω) ↪→ K(ω,
√

∆P ) ↪→M.

Note that [K(ω) : K] ≤ 2 and that [K(ω,
√

∆P ) : K(ω)] ≤ 2.

Note also that M is a splitting field of P (x) over K(ω,
√

∆P ).

Thus we see that Gal(M |K(ω,
√

∆P )) can be realised as a
subgroup of A3 ' Z/3Z.

We conclude that either Gal(M |K(ω,
√

∆P )) is the trivial group
or

Gal(M |K(ω,
√

∆P )) ' Z/3Z.



Let now α1, α2, α3 ∈ L be the three roots of P (x), with
multiplicities. Let

β := α1 + ωα2 + ω2α3 ∈M

and
γ := α1 + ω2α2 + ωα3 ∈M.

Note that
α1 + α2 + α3 = 0

In particular, we have

α1 :=
1

3
(β + γ),

α2 =
1

3
(ω2β + ωγ)

and

α3 =
1

3
(ωβ + ω2γ).



Now we claim that β3 and γ3 lie in K(ω,
√

∆P ).

If Gal(M |K(ω,
√

∆P )) is the trivial group, then
M = K(ω,

√
∆P ) and then the claim holds tautologically.

If Gal(M |K(ω,
√

∆P )) ' Z/3Z, then the claim follows from
Kummer theory.

So we see that the minimal polynomials of β3 and γ3 over K(ω)
are of degree ≤ 2.

We may thus express α1, α2 and α3 by a formula involving only
multiplications, additions and extractions of 2nd and 3rd roots.

We make this explicit.



Using the fact that 1 + ω + ω2 = 0, we compute

βγ = (α1 + ωα2 + ω2α3)(α1 + ω2α2 + ωα3)

= α2
1 + α2

2 + α2
3 − α1α2 − α1α3 − α2α3.

Note also that

0 = (α1 + α2 + α3)2 = α2
1 + α2

2 + α2
3 + 2α1α2 + 2α1α3 + 2α2α3.

Thus

βγ = βγ − (α1 + α2 + α3)2 = −3(α1α2 + α1α3 + α2α3) = −3p.

Similarly, we compute

β3 + γ3 = −27q = 27α1α2α3.



Thus β3 and γ3 are the roots of the quadratic equation

x2 + 27qX − 27p3 = 0.

Putting everything together, we see that the solutions of the
equation

y3 + ay2 + by + c = 0

are (see next slide)



β1 =
1

3
3

√
−27

2
q +

1

2

√
729q2 + 108p3+

1

3
3

√
−27

2
q − 1

2

√
729q2 + 108p3−1

3
a

β2 =
ω2

3
3

√
−27

2
q +

1

2

√
729q2 + 108p3+

ω

3
3

√
−27

2
q − 1

2

√
729q2 + 108p3−1

3
a

β3 =
ω

3
3

√
−27

2
q +

1

2

√
729q2 + 108p3+

ω2

3
3

√
−27

2
q − 1

2

√
729q2 + 108p3−1

3
a

for some choices of 3rd roots of

−27

2
q +

1

2

√
729q2 + 108p3

and

−27

2
q − 1

2

√
729q2 + 108p3

(not all of them will give solutions).
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Some group facts. Insolvable quintics.

Let G be a finite group.

Theorem (Sylow)

Suppose that #G = pna, where (a, p) = 1, p is prime and n ≥ 0.

Then there is a subgroup H ⊆ G such that #H = pn.

Furthermore, if H,H ′ ⊆ G are two subgroups such that
#H = #H ′ = pn then there is g ∈ G such that g−1Hg = H ′.

Corollary (Cauchy)

If p is prime and p|#G, then there is an element of order p in
G.

Proof. Exercise.



Let n, k ≥ 0. Let σ ∈ Sn and write [σ] for the subgroup of σ
generated by σ.

Recall that σ is is said to be a k-cycle, if

- [σ] has one orbit of cardinality k in {1, . . . , n};
- all the other orbits of [σ] have cardinality 1.

Lemma
Let p be a prime number and let σ ∈ Sp.

Suppose that the order of σ is p.

Then σ is a p-cycle.

Proof. See the notes.



Proposition

Let p be a prime number.

Let σ, τ ∈ Sp and suppose that σ is a transposition and that τ is
a p-cycle.

Then σ and τ generate Sp.

Proposition

Let p be a prime number and let P (x) ∈ Q[x] be an irreducible
polynomial of degree p.

Suppose that P (x) has precisely p− 2 real roots in C.

Then Gal(P ) ' Sp.

Proof. See the notes. Notice that complex conjugation
provides a transposition, and apply Cauchy’s theorem and the
last propostion.



Corollary

The polynomial x5 − 6x+ 3 ∈ Q[x] is not solvable by radicals.

Proof. See the notes. This polynomial is irreducible by
Eisenstein and can easily be see to have precisely three real
roots.
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The fundamental theorem of algebra via Galois theory

We will now prove that C is algebraically closed using Galois
theory and basic real analysis.

We shall need the following well-known fact.

Lemma
Let P (x) ∈ R[x] be a monic polynomial of odd degree. Then
P (x) has a root in R.

Proof. well-known (or see the notes).



Theorem.The field C is algebraically closed.

Proof. Let P (x) ∈ C[x]. We need to show that P (x) splits.

Replacing P (x) by P (x)P̄ (x), we may even assume that the
degree of P (x) is even and has coefficients in R.

Let L|R be a splitting field of P (x). Let G := Gal(L|R). Let
G2 ⊆ G be a 2-Sylow subgroup of G. Let M = LG2 . Then
[M : R] is odd by the definition of Sylow subgroups.

Suppose that there is α ∈M\R and let mα(x) ∈ R[x] be the
minimal polynomial of α.

Then deg(mα(x))|[M : R] by the tower law and thus
deg(mα(x)) is odd.

Thus, by the previous lemma, mα(x) has a root in R.

Since mα(x) is irreducible, this means that deg(mα(x)) = 1.

This contradicts the fact that α ∈M\R. We conclude that
M |R is the trivial extension.

In particular G = G2 is a 2-Sylow group.



Suppose that #G = 2k for some k ≥ 0. We may suppose wrog
that k > 0.

Any group, whose order is a power of a prime number is
solvable (see the notes). Thus there is a filtration on G, which
has cyclic quotients of order 2.

As before, this gives rise to a sequence of subfields

L = Ln ⊇ Ln−1 ⊇ · · · ⊇ L0 = R

such that Li+1 is Galois over Li for all i ∈ {0, . . . , n− 1}, and
Gal(Li+1|Li) ' Z/2Z.



By Kummer theory, there exists β ∈ L1 such that β2 ∈ L0 = R
and such that L1 = R(β).

Since any positive element of R has a square root in R, we see
that β2 < 0. Now we may compute

(β/
√
|β2|)2 = β2/|β2| = −1.

Thus the polynomial x2 + 1 ∈ R[x] has a root in L1.

In particular, x2 + 1 splits in L1.

We conclude that L1 is a splitting field for x2 + 1.

In other words L1 ' C as a R-extension.



Now suppose that k > 1.

By a similar reasoning, there is a ρ ∈ L2, such that ρ2 ∈ L1 ' C
and such that L2 = L1(ρ).

Furthermore L2|L1 is a non trivial extension by assumption.

This is a contradiction, because any element of L1 ' C has a
square root (if z = reiθ, then

√
reiθ/2 is a square root of z).

We conclude that k = 1 and thus L = L1 ' C. In particular,
P (x) splits in C.
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