Introduction to Representation Theory MT 2020

Problem Sheet 1

Throughout this sheet, k denotes a field and G denotes a finite group.

- 1. Let $g \in GL(V)$ be an element of finite order and suppose that k is algebraically closed. Prove that g is diagonalisable whenever char(k) = 0. Does this result also hold for fields of positive characteristic?
- 2. The symmetric group S_n acts on $X := \{x_1, \dots, x_n\}$ by permuting indices: $\sigma \cdot x_i = x_{\sigma(i)}$ for all $\sigma \in S_n$ and all *i*. Find all S_n -stable subspaces of the permutation representation $\rho : S_n \to \operatorname{GL}(kX)$.
- 3. Show that in Example 1.17, the G-stable subspace $\langle v_1 \rangle$ has no G-stable complement in $V = \langle v_1, v_2 \rangle$.
- 4. Let X be a G-set and suppose that the permutation representation $\rho: G \to GL(kX)$ is irreducible. Prove that the G-action on X must be transitive. Is the converse true?
- 5. For each conjugacy class C in G, define its *conjugacy class sum* to be $\widehat{C} := \sum_{x \in C} x \in kG$. Prove that the conjugacy class sums form a basis for Z(kG).
- 6. Suppose that $A = M_n(k)$ be the ring of $n \times n$ matrices with entries in k and let $V := k^n$ be the natural left A-module of $n \times 1$ column vectors.
 - (a) Prove that V is a simple A-module.
 - (b) Prove that A has no nonzero proper two-sided ideals.
 - (c) Exhibit explicit simple left ideals L_1, \dots, L_n of A such that $A = L_1 \oplus \dots \oplus L_n$.
 - (d) Is the decomposition you found in (iii) unique? Justify your answer.
- 7. Let A be k-algebra for some field k and let M be a finite dimensional A-module. A composition series for M is a finite ascending chain

$$\{0\} = M_0 < M_1 < M_2 < \dots < M_n = M$$

such that each subquotient M_k/M_{k-1} is a simple A-module for each $k = 1, \dots, n$. These subquotients are called *composition factors*. Prove the Jordan-Hölder Theorem, which states that if

$$\{0\} = N_0 < N_1 < N_2 < \dots < N_m = M$$

is another composition series for M, then necessarily m = n and there exists a permutation $\sigma \in S_n$ together with A-module isomorphisms

$$M_k/M_{k-1} \xrightarrow{\cong} N_{\sigma(k)}/N_{\sigma(k)-1}$$
 for all $k = 1, \cdots, n$.

Deduce that G has only finitely many irreducible representations, up to isomorphism.