Introduction to Representation Theory MT 2020

Problem Sheet 2

Throughout this sheet, k denotes a field, A denotes a ring and G denotes a finite group.

- 1. For each $a \in A$, let $r_a : A \to A$ be the left A-linear map given by $r_a(b) = ba$ for each $b \in A$. Prove that the map $r : A^{\text{op}} \to \text{End}_A(A)$ given by $r(a) = r_a$ is an isomorphism of rings.
- 2. (a) Suppose that $|G| \neq 0$ in k and let $e := \frac{1}{|G|} \sum_{g \in G} g \in kG$. Prove that e is a central idempotent.
 - (b) Let $G = C_3 = \langle x \rangle$ be a cyclic group of order 3. Suppose that $\operatorname{char}(k) \neq 3$ and that k contains a primitive cube root of unity ω . Find an explicit isomorphism of k-algebras $k \times k \times k \xrightarrow{\cong} kC_3$.
- 3. (a) Prove that every representation $\rho: G \to \operatorname{GL}(V)$ extends to a k-algebra homomorphism $\widetilde{\rho}: kG \to \operatorname{End}_k(V)$.
 - (b) Let $G = S_3$ and let $\rho: G \to \operatorname{GL}(W)$ be the degree 2 representation from Example 1.20. Prove that $\tilde{\rho}: kG \to \operatorname{End}_k(W)$ is surjective, provided $\operatorname{char}(k) \neq 3$.
 - (c) Assume that the characteristic of k is not 2 or 3. Using part (b), prove that there is an isomorphism of k-algebras

$$kS_3 \xrightarrow{\cong} k \times k \times M_2(k).$$

Does such an isomorphism exist when char(k) = 3?

- 4. Find an example of a ring A that contains a field F such that A is not an F-algebra.
- 5. Let V be an A-module, let $D := \operatorname{End}_A(V)$ and let $n \ge 1$.
 - (a) Use the inclusion maps $\sigma_j : V \hookrightarrow V^n$ and the projection maps $\pi_j : V^n \twoheadrightarrow V$ $(j = 1, \dots, n)$ to construct an explicit ring isomorphism $M_n(D) \xrightarrow{\cong} \operatorname{End}_A(V^n)$.
 - (b) Prove that $M_n(S)^{\text{op}}$ is isomorphic to $M_n(S^{\text{op}})$ for any ring S.
- 6. Let V be a finite dimensional kG-module.
 - (a) Let W be a one-dimensional kG-module. Prove that $V \otimes W$ is simple if and only if V is simple.
 - (b) Prove that V is simple if and only if V^* is simple.
- 7. Recall the maps $\alpha: V^* \otimes W \to \operatorname{Hom}(V, W)$ and $\beta: \operatorname{Hom}(V, W) \to V^* \otimes W$ from Lemma 4.11.
 - (a) Prove that $\beta \circ \alpha = 1_{V^* \otimes W}$.
 - (b) Prove that α is a homomorphism of kG-modules.
- 8. (*Optional.*) Let U, V, W be finite dimensional kG-modules. Prove $\text{Hom}(U \otimes V, W)$ is isomorphic to Hom(U, Hom(V, W)) as kG-modules.