Introduction to Representation Theory MT 2020

Problem Sheet 4

- 1. Find the character table of the alternating group A_5 . It may be helpful to remember that A_5 acts as a group of rotations of the regular icosahedron.
- 2. Let G be a finite group with an irreducible representation $\rho: G \to \mathrm{GL}_2(\mathbb{C})$.
 - (a) Prove that G has an element a of order 2.
 - (b) For a as above show that either det $\rho(a) \neq 1$ or else $\rho(a)$ is central in $\operatorname{GL}_2(\mathbb{C})$.
 - (c) Deduce that a finite simple group cannot have an irreducible representation of degree 2.
- 3. Let G be a finite group and suppose that V is a simple $\mathbb{C}G$ -module. Define
 - (a) Prove that $e_V = \frac{\dim V}{|G|} \sum_{g \in G} \overline{\chi_V(g)} g$ is an element of the centre of $\mathbb{C}G$.
 - (b) Let V' be another simple $\mathbb{C}G$ -module. Prove that e_V kills V' if V' is not isomorphic to V, and that e_V acts as the identity on V.
 - (c) Let V_1, \dots, V_r be the simple $\mathbb{C}G$ -modules (up to isomorphism) and let $e_i := e_{V_i}$ for $i = 1, \dots, r$. Prove that $e_i e_j = \delta_{i,j} e_i$ for all $i, j = 1, \dots, r$, and that $e_1 + \dots + e_r = 1$.
- 4. A conjugacy class g^G of a finite group G is called *real* if g is conjugate to g^{-1} . A character χ of G is called *real* if $\chi(g) \in \mathbb{R}$ for all $g \in G$. By considering the vector space

$$V := \{ f: G \to \mathbb{C} : f(g) = f(h^{-1}gh) = f(g^{-1}) \text{ for all } g, h \in G \}$$

or otherwise, prove that the number of real conjugacy classes in G is equal to the number of irreducible real characters.

- 5. Prove that every finite group has a faithful representation. Which finite abelian groups have a faithful irreducible representation?
- 6. Let H be a cyclic subgroup of $G := S_4$ and let $\varphi : H \to \mathbb{C}^{\times}$ be a faithful linear character. Write $\operatorname{Ind}_H^G \varphi$ as a sum of irreducible characters of G when (a) $H = \langle (1234) \rangle$, and (b) $H = \langle (123) \rangle$.
- 7. (a) Let V be a simple $\mathbb{C}G$ -module and let W be a simple $\mathbb{C}H$ -module. Construct a linear $G \times H$ action on $V \otimes W$ and prove that the resulting $\mathbb{C}(G \times H)$ -module is simple.
 - (b) Let V be a simple $\mathbb{C}G$ -module and let Z be the centre of G. Show that for each $m \ge 1$, the subgroup $D_m := \{(z_1, \cdots, z_m) \in Z^m : z_1 \cdots z_m = 1\}$ of Z^m acts trivially on $V^{\otimes m}$.
 - (c) By considering large values of m, deduce that dim V divides |G/Z|.

8. (Optional.) Prove that induction is transitive: if k is a field and $J \subseteq H$ are subgroups of G, then

$$\operatorname{Ind}_{H}^{G}(\operatorname{Ind}_{J}^{H}V) \cong \operatorname{Ind}_{J}^{G}V$$

as kG-modules, for every kJ-module V.

9. (*Optional.*) Suppose that V is a faithful representation of G. Prove that every simple $\mathbb{C}G$ -module W appears as a direct summand of some tensor power $V^{\otimes n}$ of V, by considering the infinite series

$$\sum_{n\geq 0} \langle \chi_W, \chi_{V^{\otimes n}} \rangle t^n$$

where t is an indeterminate.

- 10. (*Optional.*) Construct the character table of A_6 as follows.
 - (a) Use the conjugation action of A_5 on its set of Sylow 5-subgroups to construct an injective homomorphism $\sigma: A_5 \to A_6$, and prove that its image contains no 3-cycles.
 - (b) Use the left-multiplication action of A_6 on $A_6/\sigma(A_5)$ to construct an automorphism $\tau : A_6 \to A_6$, and prove that τ swaps the two conjugacy classes in A_6 consisting of elements of order 3.
 - (c) Use the natural 2-transitive action on A_6 on $\{1, 2, 3, 4, 5, 6\}$ together with part (b) to write down two irreducible characters χ_2 and χ_3 of A_6 , each of degree 5.
 - (d) Use $\Lambda^2 \chi_2$ and $\chi_2 \chi_3$ and the Orthogonality Theorems to complete the character table of A_6 .