2. Valuations

Propositional Calculus

- is designed to find the truth or falsity of a compound formula from its constituent parts
- it computes the truth values

 T ('true') or F ('false') of a formula φ,
 given the truth values assigned to
 the smallest constituent parts, i.e.
 the propositional variables occuring in φ

How this can be done is made precise in the following definition.

Lecture 3 - 1/10

2.1 Definition

1. A valuation v is a function

 $v : \{p_0, p_1, p_2, \ldots\} \to \{T, F\}$

2. Given a valuation v we extend v uniquely to a function

 \widetilde{v} : Form (\mathcal{L}) \rightarrow {T, F}

(Form (L) denotes the set of all formulas of L)

defined recursively as follows:

2.(i) If ϕ is a formula of length 1, i.e. a propositional variable, then $\tilde{v}(\phi) := v(\phi)$.

2.(ii) If \tilde{v} is defined for all formulas of length $\leq n$, let ϕ be a formula of length n + 1 (≥ 2).

Then, by the Unique Readability Theorem, either $\phi = \neg \psi$ for a unique ψ or $\phi = (\psi \star \chi)$ for a unique pair ψ, χ and a unique $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$,

where ψ and χ are formulas of lenght $\leq n$, so $\tilde{v}(\psi)$ and $\tilde{v}(\chi)$ are already defined.

Truth Tables

Define $\tilde{v}(\phi)$ by the following truth tables:

Negation

$$\begin{array}{c|c} \psi & \neg \psi \\ \hline T & F \\ \hline F & T \end{array}$$

i.e. if $\tilde{v}(\psi) = T$ then $\tilde{v}(\neg \psi) = F$ and if $\tilde{v}(\psi) = F$ then $\tilde{v}(\neg \psi) = T$

Binary Connectives

ψ	χ	$\psi \to \chi$	$\psi \wedge \chi$	$\psi \lor \chi$	$\psi \leftrightarrow \chi$
T	T	T	T	T	T
T	F	F	F	Т	F
\overline{F}	T	T	F	T	F
\overline{F}	F	T	F	F	T

so, e.g., if $\tilde{v}(\psi) = F$ and $\tilde{v}(\chi) = T$ then $\tilde{v}(\psi \lor \chi) = T$ etc.

Lecture 3 - 3/10

Remark: These truth tables correspond roughly to our ordinary use of the words 'not', 'if - then', 'and', 'or' and 'if and only if', except, perhaps, the truth table for implication (\rightarrow) .

2.2 Example

Construct the full truth table for the formula

$$\phi := ((p_0 \vee p_1) \to \neg (p_1 \wedge p_2))$$

 $\tilde{v}(\phi)$ only depends on $v(p_0), v(p_1)$ and $v(p_2)$.

p_o	p_1	$ p_2 $	$(p_0 \vee p_1)$	$(p_1 \wedge p_2)$	$\neg(p_1 \land p_2)$	$ \phi $
T	T	$\mid T \mid$	T	T	F	F
T	T	F	T	F	T	T
T	F	$\mid T \mid$	T	F	T	T
T	F	F	T	F	T	T
F	T	T	T	T	F	F
\overline{F}	T	F	T	F	T	T
F	F	T	F	F	T	T
F	F	F	F	F	T	T

Lecture 3 - 4/10

2.3 Example Truth table for

 $\phi := ((p_0 \to p_1) \to (\neg p_1 \to \neg p_0))$

p_0	$ p_1 $	$(p_0 \rightarrow p_1)$	$\neg p_1$	$\neg p_0$	$(\neg p_1 \rightarrow \neg p_0)$	ϕ
T	$\mid T \mid$	T	F	F	T	T
T	F	F	T	F	F	T
\overline{F}	T	T	F	T	T	T
\overline{F}	F	T	T	T	T	T

Lecture 3 - 5/10

3. Logical Validity

3.1 Definition

- A valuation v satisfies a formula ϕ if $\tilde{v}(\phi) = T$
- If a formula φ is satisfied by *every* valuation then φ is **logically valid** or a **tautology** (e.g. Example 2.3, not Example 2.2) *Notation:* ⊨ φ
- If a formula ϕ is satisfied by *some* valuation then ϕ is **satisfiable** (e.g. Example 2.2)
- A formula ϕ is a **logical consequence** of a formula ψ if, for *every* valuation v:

if
$$\tilde{v}(\psi) = T$$
 then $\tilde{v}(\phi) = T$

Notation: $\psi \models \phi$

Lecture 3 - 6/10

3.2 Lemma $\psi \models \phi$ if and only if $\models (\psi \rightarrow \phi)$.

Proof: '
$$\Rightarrow$$
': Assume $\psi \models \phi$.
Let v be any valuation.
- If $\tilde{v}(\psi) = T$ then (by def.) $\tilde{v}(\phi) = T$,
so $\tilde{v}((\psi \rightarrow \phi)) = T$ by tt \rightarrow .
('tt *' stands for the truth table of the connective *)
- If $\tilde{v}(\psi) = F$ then $\tilde{v}((\psi \rightarrow \phi)) = T$ by tt \rightarrow .
Thus, for every valuation v , $\tilde{v}((\psi \rightarrow \phi)) = T$,
so $\models (\psi \rightarrow \phi)$.

' \Leftarrow ': Conversely, suppose $\models (\psi \rightarrow \phi)$. Let v be any valuation s.t. $\tilde{v}(\psi) = T$. Since $\tilde{v}((\psi \rightarrow \phi)) = T$, also $\tilde{v}(\phi) = T$ by tt \rightarrow . Hence $\psi \models \phi$.

More generally, we make the following

3.3 Definition Let Γ be any (possibly infinite) set of formulas and let ϕ be any formula. Then ϕ is a **logical consequence** of Γ if, for every valuation v:

if $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\phi) = T$

Notation: $\Gamma \models \phi$

3.4 Lemma

 $\Gamma \cup \{\psi\} \models \phi \text{ if and only if } \Gamma \models (\psi \rightarrow \phi).$

Proof: similar to the proof of previous lemma 3.2 - Exercise.

Lecture 3 - 8/10

3.5 Example

$$\models ((p_0 \rightarrow p_1) \rightarrow (\neg p_1 \rightarrow \neg p_0)) \quad (cf. Ex. 2.3)$$

Hence $(p_0 \rightarrow p_1) \models (\neg p_1 \rightarrow \neg p_0) \quad by 3.2$
Hence $\{(p_0 \rightarrow p_1), \neg p_1\} \models \neg p_0 \quad by 3.4$

3.6 Example

$$\phi \models (\psi \to \phi)$$

Proof:

If $\tilde{v}(\phi) = T$ then, by $tt \rightarrow$, $\tilde{v}((\psi \rightarrow \phi)) = T$ (no matter what $\tilde{v}(\psi)$ is).

Lecture 3 - 9/10

Boolean satisfiability problem (SAT)

Given a formula ϕ , the problem is to check whether it is satisfiable.

Of course this is a finite check. The question is **how long** it takes in terms of the length of the formula.

If a satisfying valuation \tilde{v} is known then this is easy to check (so it is "NP").

But to look for a suitable v is seemingly an exponential search. Though sometimes it is "easy" to discern some structure and "see" a valuation which works.

Is there a polynomial-time (P) algorithm?

This is an important problem. It is NP complete, so resolving it would solve "P v NP", which is one of the Clay Millenium problems (and million-dollar-ium).

Lecture 3 - 10/10