
2. Valuations

Propositional Calculus

• is designed to find the truth or falsity of

a compound formula from its constituent

parts

• it computes the truth values

T (‘true’) or F (‘false’) of a formula φ,

given the truth values assigned to

the smallest constituent parts, i.e.

the propositional variables occuring in φ

How this can be done is made precise in the

following definition.

Lecture 3 - 1/10

2.1 Definition
1. A valuation v is a function

v : {p0, p1, p2, . . .} → {T, F}

2. Given a valuation v we extend v uniquely to

a function

ṽ : Form (L) → {T, F}

(Form (L) denotes the set of all formulas of L)

defined recursively as follows:

2.(i) If φ is a formula of length 1, i.e. a propo-

sitional variable, then ṽ(φ) := v(φ).

2.(ii) If ṽ is defined for all formulas of length

≤ n, let φ be a formula of length n+1 (≥ 2).

Then, by the Unique Readability Theorem,

either φ = ¬ψ for a unique ψ

or φ = (ψ ⋆ χ) for a unique pair ψ, χ

and a unique ⋆ ∈ {→,∧,∨,↔},

where ψ and χ are formulas of lenght ≤ n, so

ṽ(ψ) and ṽ(χ) are already defined.

Lecture 3 - 2/10

Truth Tables

Define ṽ(φ) by the following truth tables:

Negation

ψ ¬ψ

T F

F T

i.e. if ṽ(ψ) = T then ṽ(¬ψ) = F

and if ṽ(ψ) = F then ṽ(¬ψ) = T

Binary Connectives

ψ χ ψ → χ ψ ∧ χ ψ ∨ χ ψ ↔ χ

T T T T T T

T F F F T F

F T T F T F

F F T F F T

so, e.g., if ṽ(ψ) = F and ṽ(χ) = T

then ṽ(ψ ∨ χ) = T etc.

Lecture 3 - 3/10

Remark: These truth tables correspond roughly

to our ordinary use of the words ‘not’, ‘if -

then’, ‘and’, ‘or’ and ‘if and only if’, except,

perhaps, the truth table for implication (→).

2.2 Example

Construct the full truth table for the formula

φ := ((p0 ∨ p1) → ¬(p1 ∧ p2))

ṽ(φ) only depends on v(p0), v(p1) and v(p2).

po p1 p2 (p0 ∨ p1) (p1 ∧ p2) ¬(p1 ∧ p2) φ

T T T T T F F

T T F T F T T

T F T T F T T

T F F T F T T

F T T T T F F

F T F T F T T

F F T F F T T

F F F F F T T

Lecture 3 - 4/10

2.3 Example Truth table for

φ := ((p0 → p1) → (¬p1 → ¬p0))

p0 p1 (p0 → p1) ¬p1 ¬p0 (¬p1 → ¬p0) φ

T T T F F T T

T F F T F F T

F T T F T T T

F F T T T T T

Lecture 3 - 5/10

3. Logical Validity

3.1 Definition

• A valuation v satisfies a formula φ

if ṽ(φ) = T

• If a formula φ is satisfied by every valuation

then φ is logically valid or a tautology

(e.g. Example 2.3, not Example 2.2)

Notation: |= φ

• If a formula φ is satisfied by some valuation

then φ is satisfiable (e.g. Example 2.2)

• A formula φ is a logical consequence of

a formula ψ if, for every valuation v:

if ṽ(ψ) = T then ṽ(φ) = T

Notation: ψ |= φ

Lecture 3 - 6/10

3.2 Lemma ψ |= φ if and only if |= (ψ → φ).

Proof: ‘⇒’: Assume ψ |= φ.

Let v be any valuation.

- If ṽ(ψ) = T then (by def.) ṽ(φ) = T ,

so ṽ((ψ → φ)) = T by tt →.

(‘tt ⋆’ stands for the truth table of the connective ⋆)

- If ṽ(ψ) = F then ṽ((ψ → φ)) = T by tt →.

Thus, for every valuation v, ṽ((ψ → φ)) = T ,

so |= (ψ → φ).

‘⇐’: Conversely, suppose |= (ψ → φ).

Let v be any valuation s.t. ṽ(ψ) = T .

Since ṽ((ψ → φ)) = T , also ṽ(φ) = T by tt →.

Hence ψ |= φ.

✷

Lecture 3 - 7/10

More generally, we make the following

3.3 Definition Let Γ be any (possibly infinite)

set of formulas and let φ be any formula.

Then φ is a logical consequence of Γ

if, for every valuation v:

if ṽ(ψ) = T for all ψ ∈ Γ then ṽ(φ) = T

Notation: Γ |= φ

3.4 Lemma

Γ ∪ {ψ} |= φ if and only if Γ |= (ψ → φ).

Proof: similar to the proof of previous lemma

3.2 - Exercise.

Lecture 3 - 8/10

3.5 Example

|= ((p0 → p1) → (¬p1 → ¬p0)) (cf. Ex. 2.3)
Hence (p0 → p1) |= (¬p1 → ¬p0) by 3.2
Hence {(p0 → p1),¬p1} |= ¬p0 by 3.4

3.6 Example

φ |= (ψ → φ)

Proof:

If ṽ(φ) = T then, by tt →, ṽ((ψ → φ)) = T

(no matter what ṽ(ψ) is).

✷

Lecture 3 - 9/10

Boolean satisfiability problem (SAT)

Given a formula φ, the problem is to check

whether it is satisfiable.

Of course this is a finite check. The question

is how long it takes in terms of the length of

the formula.

If a satisfying valuation ṽ is known then this is

easy to check (so it is “NP”).

But to look for a suitable v is seemingly an

exponential search. Though sometimes it is

“easy” to discern some structure and “see” a

valuation which works.

Is there a polynomial-time (P) algorithm?

This is an important problem. It is NP com-

plete, so resolving it would solve “P v NP”,

which is one of the Clay Millenium problems

(and million-dollar-ium).

Lecture 3 - 10/10

