4. Logical Equivalence

4.1 Definition

Two formulas ϕ, ψ are **logically equivalent** if $\phi \models \psi$ and $\psi \models \phi$,

i.e. if for *every* valuation v, $\tilde{v}(\phi) = \tilde{v}(\psi)$.

Notation: $\phi \models = \psi$

Exercise $\phi \models = \psi$ if and only if $\models (\phi \leftrightarrow \psi)$

4.2 Lemma

(i) For any formulas ϕ, ψ

$$(\phi \lor \psi) \models = \neg(\neg \phi \land \neg \psi)$$

(ii) Hence every formula is logically equivalent to one without $'\lor$ '.

Proof:

(i) Either use truth tables or observe that, for any valuation v:

$$\begin{split} \widetilde{v}(\neg(\neg\phi\wedge\neg\psi)) &= F\\ \text{iff } \widetilde{v}((\neg\phi\wedge\neg\psi)) &= T \quad \text{by tt } \neg\\ \text{iff } \widetilde{v}(\neg\phi) &= \widetilde{v}(\neg\psi) &= T \quad \text{by tt } \wedge\\ \text{iff } \widetilde{v}(\phi) &= \widetilde{v}(\psi) &= F \quad \text{by tt } \neg\\ \text{iff } \widetilde{v}(\phi\vee\psi) &= F \quad \text{by tt } \vee \end{split}$$

(ii) Induction on the length of the formula ϕ :

Clear for length 1

For the induction step observe that

If
$$\psi \models = \psi'$$
 then $\neg \psi \models = \neg \psi'$

and

If
$$\phi \models = \phi'$$
 and $\psi \models = \psi'$ then $(\phi \star \psi) \models = (\phi' \star \psi')$, where \star is any binary connective. (Use (i) if $\star = \vee$)

4.3 Some sloppy notation

We are only interested in formulas **up to logical equivalence**:

If A, B, C are formulas then

$$((A \lor B) \lor C)$$
 and $(A \lor (B \lor C))$

are different formulas, but logically equivalent. So here - up to logical equivalence - bracketting doesn't matter. Hence

- Write $(A \lor B \lor C)$ or even $A \lor B \lor C$ instead.
- More generally, if A_1, \ldots, A_n are formulas, write $A_1 \vee \ldots \vee A_n$ or $\bigvee_{i=1}^n A_i$ for some (any) correctly bracketed version.
- Similarly $\bigwedge_{i=1}^n A_i$.

Lecture 4 - 3/12

4.4 Some logical equivalences

Let A, B, A_i be formulas. Then

1. $\neg(A \lor B) \models \Rightarrow (\neg A \land \neg B)$ So, inductively,

$$\neg \bigvee_{i=1}^{n} A_i \models = \mid \bigwedge_{i=1}^{n} \neg A_i$$

This is called De Morgan's Laws.

2. like 1. with \lor and \land swapped everywhere

3.
$$(A \rightarrow B) \models = (\neg A \lor B)$$

4.
$$(A \lor B) \models = ((A \to B) \to B)$$

5.
$$(A \leftrightarrow B) \models \equiv ((A \to B) \land (B \to A))$$

Lecture 4 - 4/12

5. Adequacy of the Connectives

The connectives \neg (unary) and \rightarrow , \land , \lor , \leftrightarrow (binary) are the *logical part* of our language for propositional calculus.

Question:

- Do we have enough connectives?
- Can we express everything which is logically conceivable using only these connectives?
- ullet Does our language ${\cal L}$ recover all potential truth tables?

Answer: yes

Lecture 4 - 5/12

5.1 Definition

(i) We denote by V_n the set of all functions

$$v: \{p_0, \dots, p_{n-1}\} \to \{T, F\}$$

i.e. of all partial valuations, only assigning values to the first n propositional variables. Hence $\sharp V_n=2^n$.

(ii) An n-ary truth function is a function

$$J: V_n \to \{T, F\}$$

There are precisely 2^{2^n} such functions.

(iii) If a formula $\phi \in \text{Form}(\mathcal{L})$ contains only prop. variables from the set $\{p_0, \dots, p_{n-1}\}$ — write ' $\phi \in \text{Form}_n(\mathcal{L})$ ' — then ϕ determines the truth function

$$J_{\phi}: V_n \rightarrow \{T, F\}$$

 $v \mapsto \widetilde{v}(\phi)$

i.e. J_{ϕ} is given by the truth table for ϕ .

Lecture 4 - 6/12

5.2 Theorem

Our language \mathcal{L} is adequate,

i.e. for every n and every truth function

 $J: V_n \to \{T, F\}$ there is some $\phi \in Form_n(\mathcal{L})$ with $J_{\phi} = J$.

(In fact, we shall only use the connectives \neg , \land , \lor .)

Proof: Let $J:V_n \to \{T,F\}$ be any n-ary truth function.

If J(v) = F for all $v \in V_n$ take $\phi := (p_0 \land \neg p_0)$. Then, for all $v \in V_n$: $J_{\phi}(v) = \tilde{v}(\phi) = F = J(v)$.

Otherwise let $U := \{v \in V_n \mid J(v) = T\} \neq \emptyset$. For each $v \in U$ and each i < n define the formula

$$\psi_i^v := \begin{cases} p_i & \text{if } v(p_i) = T \\ \neg p_i & \text{if } v(p_i) = F \end{cases}$$

and let $\psi^v := \bigwedge_{i=0}^{n-1} \psi_i^v$.

Lecture 4 - 7/12

Then for any valuation $w \in V_n$ one has the following equivalence (\star) :

$$\widetilde{w}(\psi^v) = T \quad \text{iff} \quad \begin{subarray}{ll} \text{for all } i < n : \\ \widetilde{w}(\psi^v_i) = T \end{subarray} \quad \begin{subarray}{ll} \text{(by tt \land)} \\ \text{iff} \quad w = v \end{subarray} \quad \begin{subarray}{ll} \text{(by def. of ψ^v_i)} \end{subarray}$$

Now define $\phi := \bigvee_{v \in U} \psi^v$.

Then for any valuation $w \in V_n$:

$$\widetilde{w}(\phi)=T$$
 iff for some $v\in U$: $\widetilde{w}(\psi^v)=T$ (by $\operatorname{tt}\vee \widetilde{y}$ iff for some $v\in U$: $w=v$ (by $(\star)\widetilde{y}$ iff $w\in U$ iff $J(w)=T$

Hence for all $w \in V_n$: $J_{\phi}(w) = J(w)$, i.e. $J_{\phi} = J$.

5.3 Definition

- (i) A formula which is a conjunction of p_i 's and $\neg p_i$'s is called a **conjunctive clause** e.g. ψ^v in the proof of 5.2
- (ii) A formula which is a disjunction of conjunctive clauses is said to be in disjunctive normal form ('dnf')
 e.g. φ in the proof of 5.2

In Theorem 5.2 we constructed, for a given J,

Formula ϕ with $J_{\phi} = J$,

 $\phi := \bigvee_{v \in U} \psi^v$, where $\psi^v := \bigwedge_{i=0}^{n-1} \psi^v_i$, where $\psi^v_i \in \{p_i, \neg p_i\}$.

So the proof, in fact, establishes the following Corollary:

Lecture 4 - 9/12

5.4 Corollary - 'The dnf-Theorem' For any truth function

$$J: V_n \to \{T, F\}$$

there is a formula $\phi \in Form_n(\mathcal{L})$ in dnf with $J_{\phi} = J$.

In particular, every formula is logically equivalent to one in dnf.

5.5 Definition

Suppose S is a set of (truth-functional) connectives — so each $s \in S$ is given by some truth table.

- (i) Write $\mathcal{L}[S]$ for the language with connectives S instead of $\{\neg, \rightarrow, \land, \lor, \leftrightarrow\}$ and define $\mathsf{Form}(\mathcal{L}[S])$ and $\mathsf{Form}_n(\mathcal{L}[S])$ accordingly.
- (ii) We say that S is adequate (or truth functionally complete) if for all $n \ge 1$ and for all n-ary truth functions J there is some $\phi \in \operatorname{Form}_n(\mathcal{L}[S])$ with $J_{\phi} = J$.

5.6 Examples

- 1. $S = {\neg, \land, \lor}$ is adequate (Theorem 5.2)
- 2. Hence, by Lemma 4.2(i), $S = \{\neg, \land\}$ is adequate:

$$\phi \lor \psi \models \Rightarrow \neg(\neg \phi \land \neg \psi)$$

Similarly, $S = \{\neg, \lor\}$ is adequate:

$$\phi \wedge \psi \models = \neg(\neg \phi \vee \neg \psi)$$

- 3. Can express \vee in terms of \rightarrow , so $\{\neg, \rightarrow\}$ is adequate (Problem set #2).
- 4. $S = \{ \lor, \land, \rightarrow \}$ is **not** adequate, because any $\phi \in \text{Form}(\mathcal{L}[S])$ has T in the top row of tt ϕ , so no such ϕ gives $J_{\phi} = J_{\neg p_0}$ (#2).
- 5. There are precisely two binary connectives, say \uparrow and \downarrow such that $S = \{\uparrow\}$ and $S = \{\downarrow\}$ are adequate (Problem set #2).

Lecture 4 - 12/12