4. Logical Equivalence

4.1 Definition
Two formulas ¢, are logically equivalent

if ¢ = and ¢ = ¢,
i.e. if for every valuation v, v(¢) = v(v).
Notation: ¢ ==

Exercise ¢ == v if and only if = (¢ < v)

4.2 Lemma
(i) For any formulas ¢,

(V) == (=9 A=)

(ii) Hence every formula is logically equivalent
to one without ‘V'.

Lecture 4 - 1/12



Proof:

(i) Either use truth tables
or observe that, for any valuation v:

v(=(~p A1) =F
iff 5((mpA—))=T by tt —
iff 9(—¢) =o(—p) =T by tt A
iff 9(¢) =v(y) =F by tt —
iff 9(pVe)=F by tt Vv

(ii) Induction on the length of the formula ¢:
Clear for length 1

For the induction step observe that
If ¢ == ¢’ then - == —/
and
If ¢ == ¢ and v == ¢’ then (¢xy) == (¢'xy),
where % is any binary connective.
(Use (i) if x=1V)
O

Lecture 4 - 2/12



4.3 Some sloppy notation

We are only interested in formulas
up to logical equivalence:

If A, B,C are formulas then

((AvB)v(C) and (Av(BV())

are different formulas, but logically equivalent.
So here - up to logical equivalence -
bracketting doesn’t matter.

Hence

e Write (AVBVC) or even AV BV C(C instead.

e More generally, if A1,..., A, are formulas,
write A3 V...V Ap or Vi, A;
for some (any) correctly bracketed version.

e Similarly AT A;.

Lecture 4 - 3/12



4.4 Some logical equivalences

Let A, B, A; be formulas. Then

1. -=(AVvB) =g (WAAN—-B)
So, inductively,

n

mn
-V A EH N A
i=1 i=1
This is called De Morgan’s Laws.

2. like 1. with v and A swapped everywhere

3. (A— B) ==| (~AV B)
4. (AV B) == ((A— B) — B)
5. (A« B) == ((A— B)A(B — A))

Lecture 4 - 4/12



5. Adequacy of the Connectives

The connectives — (unary) and
—, A\, V, <« (binary) are the logical part of our
language for propositional calculus.

Question:
e DO we have enough connectives?

e Can we express everything which is logically
conceivable using only these connectives?

e Does our language L recover all potential
truth tables?

Answer: yes

Lecture 4 - 5/12



5.1 Definition

(i) We denote by V;, the set of all functions

v: {po,...,Pn_1} — {T,F)}
i.e. of all partial valuations, only assigning

values to the first n propositional variables.
Hence #V,, = 2".

(ii) An n-ary truth function is a function
J: Vo = {T,F}
There are precisely 22" such functions.

(iit) If a formula ¢ € Form(L£) contains only
prop. variables from the set {pg,...,pPn—1}
— write ‘¢ € Form, (L)' —
then ¢ determines the truth function

Jp: Vo — {T,F}
v — (o)
i.e. J is given by the truth table for ¢.

Lecture 4 - 6/12



5.2 Theorem

OQur language L is adequate,

i.e. for every n and every truth function

J: Vi = {T,F} there is some ¢ € Formy,(L)
with J¢ = J.

(In fact, we shall only use the connectives —, A\, V.)

Proof: Let J: V,, — {T,F} be any n-ary truth
function.

If J(v) = F for all ve V, take ¢ := (pg A —pg).
Then, for all v e V! Jy(v) =v(9) = F = J(v).

Otherwise let U :={v eV, | J(v) =T} # 0.
For each v € U and each 7 < n define the for-
mula

w@) F— { p; if U(pi) =T
v e IF u(p) = F

and let ¥ .= /\f};& (U

Lecture 4 - 7/12



Then for any valuation w € Vj, one has the
following equivalence (x):

G(WY) =T iff fé)(rﬁ')' i:<T”: (by tt A)

iff w=v (by def. of ¥?)
Now define ¢ := \,cpy ¥°.

Then for any valuation w € Vj:

w(p) =T iff forsomeveU: w(@W?¥) =T (by ttv

iff forsomevelU: w=wv (by (%))
iff weU
iff J(w)=T

Hence for all w € V! Jy(w) = J(w), i.e. Jy =
J.

Lecture 4 - 8/12



5.3 Definition

(i) A formula which is a conjunction of p;'s
and —p;’'s is called a conjunctive clause
- e.g. ¥Y¥ in the proof of 5.2

(ii) A formula which is a disjunction of con-
junctive clauses is said to be in
disjunctive normal form (‘dnf’)

- e.9. ¢ in the proof of 5.2

In Theorem 5.2 we constructed, for a given J,

Formula ¢ with J, = J,

{pia _'pi}-

So the proof, in fact, establishes the following
Corollary:

Lecture 4 - 9/12



5.4 Corollary - ‘The dnf-Theorem’
For any truth function

J: Vp = {1, F}

there is a formula ¢ € Formy (L) in dnf
with J, = J.

In particular, every formula is logically equiva-
lent to one in dnf.

Lecture 4 - 10/12



5.5 Definition
Suppose S is a set of (truth-functional) con-

nectives — so each s € S is given by some truth
table.

(i) Write L[S] for the language with connec-
tives S instead of {—, —, A, V, <} and define
Form(L[S]) and Form,(L[S]) accordingly.

(ii) We say that S is adequate (or truth func-
tionally complete) if for all n > 1 and for
all n-ary truth functions J there is some
¢ € Form,(L[S]) with J, = J.

Lecture 4 - 11/12



5.6 Examples

1.

2.

S = {—,A,V} is adequate (Theorem 5.2)

Hence, by Lemma 4.2(i), S = {—, A} is ad-
equate:

¢V Y == (=g A1)
Similarly, S = {—,V} is adequate:

PAY FE= (o V)

. Can express V in terms of —, so {—,—} is

adequate (Problem set #2).

S = {V,A,—} is not adequate, because any
¢ € Form(L[S]) has T in the top row of
tt ¢, so no such ¢ gives J, = J-p, (#2).

T here are precisely two binary connectives,
say 1 and | such that S = {1} and S = {{}
are adequate (Problem set #2).

Lecture 4 - 12/12



