6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$:

if
$$\Gamma \cup \{\alpha\} \vdash \beta$$
 then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Proof:

We prove by induction on m:

if $\alpha_1, \ldots, \alpha_m$ is derivable in L_0 from the hypotheses $\Gamma \cup \{\alpha\}$ then for all $i \leq m$ $(\alpha \to \alpha_i)$ is derivable in L_0 from the hypotheses Γ .

m=1

Either α_1 is an Axiom or $\alpha_1 \in \Gamma \cup \{\alpha\}$.

Lecture 6 - 1/8

Case 1: α_1 is an Axiom

Then

$$\begin{array}{lll} 1 & \alpha_1 & & [\mathsf{Axiom}] \\ 2 & (\alpha_1 \to (\alpha \to \alpha_1)) & [\mathsf{Instance of A1} \] \\ 3 & (\alpha \to \alpha_1) & & [\mathsf{MP 1,2}] \end{array}$$

is a derivation of $(\alpha \to \alpha_1)$ from hypotheses \emptyset .

Note that if $\Delta \vdash \psi$ and $\Delta \subseteq \Delta'$, then obviously $\Delta' \vdash \psi$.

Thus $(\alpha \to \alpha_1)$ is derivable in L_0 from hypotheses Γ .

Case 2: $\alpha_1 \in \Gamma \cup \{\alpha\}$

If $\alpha_1 \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma$ ').

If $\alpha_1 = \alpha$, then, by Example 6.3, $\vdash (\alpha \to \alpha_1)$, hence $\Gamma \vdash (\alpha \to \alpha_1)$.

Lecture 6 - 2/8

Induction Step

IH: Suppose result is true for derivations of length $\leq m$.

Let $\alpha_1, \ldots, \alpha_{m+1}$ be a derivation in L_0 from $\Gamma \cup \{\alpha\}$.

Then **either** α_{m+1} is an axiom or $\alpha_{m+1} \in \Gamma \cup \{\alpha\}$ – in these cases proceed as above, even without IH.

Or α_{m+1} is obtained by MP from some earlier α_j, α_k , i.e. there are j, k < m+1 such that $\alpha_j = (\alpha_k \to \alpha_{m+1})$.

By IH, we have

$$\Gamma \vdash (\alpha \to \alpha_k)$$
 and
$$\Gamma \vdash (\alpha \to \alpha_j),$$
 so
$$\Gamma \vdash (\alpha \to (\alpha_k \to \alpha_{m+1}))$$

Lecture 6 - 3/8

Let β_1, \ldots, β_r be a derivation in L_0 of $(\alpha \to \alpha_k) = \beta_r$ from Γ

and let $\gamma_1, \ldots, \gamma_s$ be a derivation in L_0 of $(\alpha \to (\alpha_k \to \alpha_{m+1})) = \gamma_s$ from Γ .

Then

is a derivation of $(\alpha \to \alpha_{m+1})$ in L_0 from Γ . \square Lecture 6 - 4/8

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP.
 - So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise **algorithm** for converting any derivation showing $\Gamma \cup \{\alpha\} \vdash \beta$ into one showing $\Gamma \vdash (\alpha \rightarrow \beta)$.
- Converse is easy:

If
$$\Gamma \vdash (\alpha \rightarrow \beta)$$
 then $\Gamma \cup \{\alpha\} \vdash \beta$.

Proof:

$$\begin{array}{cccc} \vdots & \vdots & \text{derivation from } \Gamma \\ \mathbf{r} & \alpha \to \beta \\ \mathbf{r+1} & \alpha & [\in \Gamma \cup \{\alpha\}] \\ \mathbf{r+2} & \beta & [\mathsf{MP}\ \mathsf{r},\ \mathsf{r+1}] \end{array}$$

6.8 Example of use of DT

If
$$\Gamma \vdash (\alpha \rightarrow \beta)$$
 and $\Gamma \vdash (\beta \rightarrow \gamma)$ then $\Gamma \vdash (\alpha \rightarrow \gamma)$.

Proof:

By the deduction theorem ('DT'), it suffices to show that $\Gamma \cup \{\alpha\} \vdash \gamma$.

From now on we may treat DT as an additional inference rule in L_0 .

Lecture 6 - 6/8

6.9 Definition

The **sequent calculus** SQ is the system where a **proof** (or **derivation**) of $\phi \in \text{Form}(\mathcal{L}_0)$ from $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is a finite sequence of **sequents**, i.e. of expressions of the form

$$\Delta \vdash_{SQ} \psi$$

with $\Delta \subseteq \mathsf{Form}(\mathcal{L}_0)$ and $\Gamma \vdash_{SQ} \phi$ as last sequent.

Sequents may be formed according to the following rules

Ass: if $\psi \in \Delta$ then infer $\Delta \vdash_{SQ} \psi$

MP: from $\Delta \vdash_{SQ} \psi$ and $\Delta' \vdash_{SQ} (\psi \to \chi)$ infer $\Delta \cup \Delta' \vdash_{SQ} \chi$

DT: from $\Delta \cup \{\psi\} \vdash_{SQ} \chi$ infer $\Delta \vdash_{SQ} (\psi \to \chi)$

PC: from $\Delta \cup \{\neg \psi\} \vdash_{SQ} \chi$ and $\Delta' \cup \{\neg \psi\} \vdash_{SQ} \neg \chi$ infer $\Delta \cup \Delta' \vdash_{SQ} \psi$

'PC' stands for proof by contradiction'

Note: no axioms.

Lecture 6 - 7/8

6.10 Example of a proof in SQ

$$\begin{array}{ll}
1 & \neg \beta \vdash_{SQ} \neg \beta & [Ass] \\
2 & (\neg \beta \to \neg \alpha) \vdash_{SQ} (\neg \beta \to \neg \alpha) & [Ass]
\end{array}$$

3
$$(\neg \beta \rightarrow \neg \alpha), \neg \beta \vdash_{SO} \neg \alpha$$
 [MP 1,2]

4
$$\alpha, \neg \beta \vdash_{SQ} \alpha$$
 [Ass]

5
$$(\neg \beta \rightarrow \neg \alpha), \alpha \vdash_{SQ} \beta$$
 [PC 3,4]

6
$$(\neg \beta \rightarrow \neg \alpha) \vdash_{SQ} (\alpha \rightarrow \beta)$$
 [DT 5]

7
$$\vdash_{SO} ((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$$
 [DT 6]

So \vdash_{SQ} A3.

We'd better write ' $\Gamma \vdash_{L_0} \phi$ ' for ' $\Gamma \vdash \phi$ in L_0 '.

6.11 Theorem

 L_0 and SQ are equivalent: for all Γ, ϕ

$$\Gamma \vdash_{L_0} \phi \text{ iff } \Gamma \vdash_{SQ} \phi.$$

Proof: Exercise