
PART II:

PREDICATE CALCULUS

so far:

- logic of the connectives ¬,∧,∨,→,↔, . . . (as

used in mathematics)

- smallest unit: propositions (nothing “inside”)

- deductive calculus: checking logical validity

and computing truth tables

−− > sound, complete, compact

now:

- go more deeply into the structure of propo-

sitions used in mathematics

- analyse grammatically correct use of func-

tions, relations, constants, variables and quan-

tifiers

- define logical validity in this refined language

- discover axioms and rules of inference (be-

yond those of propositional calculus) used in

mathematical arguments

- prove: −− > sound, complete, compact

Lecture 8 - 1/8

What is a mathematical structure?

A group G is a set G together with a binary

operation G2 ∋ (a, b) 7→ ab ∈ G given by some

binary function f : G2 → G (the group opera-

tion) and a distinguished element e (the iden-

tity element).

So it is a triple 〈G; f, e〉.

A field has more/different structure it is

〈F ;+,×,0,1〉

We also want to consider relations like <.

The language of predicate calculus has sym-

bols to represent these (functions, relations,

constants) and enables suitable properties of

the structures to be expressed.

Lecture 8 - 2/8

8. The language of (first-order)
predicate calculus

The language LFOPC consists of the following

symbols:

Logical symbols

connectives: →,¬

quantifier: ∀ (‘for all’)

variables: x0, x1, x2, . . .

3 punctuation marks: () ,

equality symbol:
.
=

non-logical symbols:

predicate (or relation) symbols: P
(k)
n for n ≥

0, k ≥ 1 (P
(k)
n is a k-ary predicate symbol)

function symbols: f
(k)
n for n ≥ 0, k ≥ 1 (f

(k)
n is

a k-ary function symbol)

constant symbols: cn for n ≥ 0

Lecture 8 - 3/8

8.1 Definition

(a) The terms of LFOPC are defined recur-

sively as follows:

(i) Every variable is a term.

(ii) Every constant symbol is a term.

(iii) For each n ≥ 0, k ≥ 1, if t1, . . . , tk are terms,

so is the string

f
(k)
n (t1, . . . , tk)

(b) An atomic formula of LFOPC is any string

of the form

P
(k)
n (t1, . . . , tk) or t1

.
= t2

with n ≥ 0, k ≥ 1, and where all ti are terms.

(c) The formulas of LFOPC are defined recur-

sively as follows:

(i) Any atomic formula is a formula

(ii) If φ, ψ are formulas, then so are ¬φ and

(φ→ ψ)

(iii) If φ is a formula, then for any variable xi

so is ∀xiφ

Lecture 8 - 4/8

8.2 Examples

c0; c3; x5; f
(1)
3 (c2); f

(2)
4 (x1, f

(1)
3 (c2)) are all

terms

f
(3)
2 (x1, x2) is not a term (wrong arity)

P
(3)
0 (x4, c0, f

(2)
3 (c1, x2)) and f

(2)
1 (c5, c6)

.
= x11

are atomic formulas

f
(1)
3 (c2) is a term, but no formula

∀x1f
(2)
2 (x1, c7)

.
= x2 is a formula, not atomic

∀x2P
(1)
0 (x3) is a formula

8.3 Remark

We have unique readability for terms, for atomic

formulas, and for formulas.

Lecture 8 - 5/8

8.4 Interpretations and logical validity for

LFOPC (Informal discussion)

(A) Consider the formula

φ1 : ∀x1∀x2(x1
.
= x2 → f

(1)
5 (x1)

.
= f

(1)
5 (x2))

Given that
.
= is to be interpreted as equality, ∀

as ‘for all’, and the f
(k)
n as actual functions (in

k arguments), φ1 should always be true. We

shall write

|= φ1

and say ‘φ1 is logically valid’.

(B) Consider the formula

φ2 : ∀x1∀x2(f
(2)
7 (x1, x2)

.
= f

(2)
7 (x2, x1) → x1

.
= x2)

Then φ2 may be false or true depending on the

situation:

Lecture 8 - 6/8

- If we interpret f
(2)
7 as + on N, then φ2 is

false, e.g. 1+2=2+1, but 1 6= 2. So in this

interpretation, φ2 is false and ¬φ2 is true. We

will want to write

〈N;+〉 |= ¬φ2

- If we interpret f
(2)
7 as minus (-) on R, then

φ2 becomes true: if x1 − x2 = x2 − x1, then

2x1 = 2x2, and hence x1 = x2.

So

〈R;−〉 |= φ2

So we will need an appropriate formalism of

interpreting our formulas and determining their

validity.

Lecture 8 - 7/8

8.5 Free and bound variables

(Informal discussion)

There is a further complication: Consider the

formula

φ3 : ∀x0P
(2)
0 (x1, x0)

Under the interpretation 〈N,≤〉 you cannot tell

whether 〈N,≤〉 |= φ3:

- if we put x1 = 0 then yes

- if we put x1 = 2 then no.

So it depends on the value we assign to x1 (like

in propositional calculus: truth value of p0∧ p1
depends on the valuation).

In φ3 we can assign a value to x1 because x1
occurs free in φ3.

For x0, however, it makes no sense to assign a

particular value; because x0 is bound in φ3 by

the quantifier ∀x0.

Lecture 8 - 8/8

