PART II:

PREDICATE CALCULUS

so far:

- logic of the connectives $\neg, \land, \lor, \rightarrow, \leftrightarrow, \ldots$ (as used in mathematics)

- *smallest unit:* propositions (nothing "inside")

- *deductive calculus:* checking logical validity and computing truth tables

--> sound, complete, compact

now:

- go *more deeply into* the structure of propositions used in mathematics

- analyse grammatically correct use of *functions, relations, constants, variables* and *quantifiers*

 define *logical validity* in this refined language
discover *axioms* and *rules of inference* (beyond those of propositional calculus) used in mathematical arguments

- prove: -- > sound, complete, compact

Lecture 8 - 1/8

What is a mathematical structure?

A group G is a set G together with a binary operation $G^2 \ni (a, b) \mapsto ab \in G$ given by some binary function $f: G^2 \to G$ (the group operation) and a distinguished element e (the identity element).

So it is a triple $\langle G; f, e \rangle$.

A field has more/different structure it is

 $\langle F; +, \times, 0, 1 \rangle$

We also want to consider relations like <.

The language of predicate calculus has symbols to represent these (functions, relations, constants) and enables suitable properties of the structures to be expressed.

Lecture 8 - 2/8

8. The language of (first-order) predicate calculus

The language \mathcal{L}^{FOPC} consists of the following symbols:

Logical symbols

connectives: \rightarrow, \neg quantifier: \forall ('for all') variables: x_0, x_1, x_2, \ldots 3 punctuation marks: (), equality symbol: \doteq

non-logical symbols:

predicate (or relation) symbols: $P_n^{(k)}$ for $n \ge 0, k \ge 1$ ($P_n^{(k)}$ is a *k*-ary predicate symbol) function symbols: $f_n^{(k)}$ for $n \ge 0, k \ge 1$ ($f_n^{(k)}$ is a *k*-ary function symbol) constant symbols: c_n for $n \ge 0$

Lecture 8 - 3/8

8.1 Definition

(a) The **terms** of \mathcal{L}^{FOPC} are defined recursively as follows:

(i) Every variable is a term.

(ii) Every constant symbol is a term.

(iii) For each $n \ge 0, k \ge 1$, if t_1, \ldots, t_k are terms, so is the string

$$f_n^{(k)}(t_1,\ldots,t_k)$$

(b) An **atomic formula** of $\mathcal{L}^{\text{FOPC}}$ is any string of the form

 $P_n^{(k)}(t_1,\ldots,t_k)$ or $t_1 \doteq t_2$

with $n \ge 0, k \ge 1$, and where all t_i are terms.

(c) The **formulas** of \mathcal{L}^{FOPC} are defined recursively as follows:

(i) Any atomic formula is a formula

(ii) If ϕ, ψ are formulas, then so are $\neg \phi$ and $(\phi \rightarrow \psi)$

(iii) If ϕ is a formula, then for any variable x_i so is $\forall x_i \phi$

Lecture 8 - 4/8

8.2 Examples

 c_0 ; c_3 ; x_5 ; $f_3^{(1)}(c_2)$; $f_4^{(2)}(x_1, f_3^{(1)}(c_2))$ are all terms

 $f_2^{(3)}(x_1, x_2)$ is *not* a term (wrong arity)

 $P_0^{(3)}(x_4, c_0, f_3^{(2)}(c_1, x_2))$ and $f_1^{(2)}(c_5, c_6) \doteq x_{11}$ are atomic formulas

 $f_3^{(1)}(c_2)$ is a term, but no formula

 $\forall x_1 f_2^{(2)}(x_1, c_7) \doteq x_2$ is a formula, not atomic

 $\forall x_2 P_0^{(1)}(x_3)$ is a formula

8.3 Remark

We have **unique readability** for terms, for atomic formulas, and for formulas.

Lecture 8 - 5/8

8.4 Interpretations and logical validity for \mathcal{L}^{FOPC} (Informal discussion)

(A) Consider the formula

$$\phi_1: \forall x_1 \forall x_2 (x_1 \doteq x_2 \rightarrow f_5^{(1)}(x_1) \doteq f_5^{(1)}(x_2))$$

Given that \doteq is to be interpreted as equality, \forall as 'for all', and the $f_n^{(k)}$ as actual functions (in k arguments), ϕ_1 should always be true. We shall write

 $\models \phi_1$

and say ' ϕ_1 is **logically valid**'.

(B) Consider the formula

 $\phi_2: \forall x_1 \forall x_2 (f_7^{(2)}(x_1, x_2) \doteq f_7^{(2)}(x_2, x_1) \to x_1 \doteq x_2)$

Then ϕ_2 may be false or true depending on the situation:

Lecture 8 - 6/8

- If we interpret $f_7^{(2)}$ as + on \mathbb{N} , then ϕ_2 is false, e.g. 1+2=2+1, but $1 \neq 2$. So in this interpretation, ϕ_2 is false and $\neg \phi_2$ is true. We will want to write

$$\langle \mathbb{N}; + \rangle \models \neg \phi_2$$

- If we interpret $f_7^{(2)}$ as minus (-) on \mathbb{R} , then ϕ_2 becomes true: if $x_1 - x_2 = x_2 - x_1$, then $2x_1 = 2x_2$, and hence $x_1 = x_2$. So

$$\langle \mathbb{R}; - \rangle \models \phi_2$$

So we will need an appropriate formalism of interpreting our formulas and determining their validity.

8.5 Free and bound variables (Informal discussion)

There is a further complication: Consider the formula

$$\phi_3: \forall x_0 P_0^{(2)}(x_1, x_0)$$

Under the interpretation $\langle \mathbb{N}, \leq \rangle$ you cannot tell whether $\langle \mathbb{N}, \leq \rangle \models \phi_3$:

- if we put $x_1 = 0$ then yes - if we put $x_1 = 2$ then no.

So it depends on the value we assign to x_1 (like in propositional calculus: truth value of $p_0 \wedge p_1$ depends on the valuation).

In ϕ_3 we can assign a value to x_1 because x_1 occurs free in ϕ_3 .

For x_0 , however, it makes no sense to assign a particular value; because x_0 is **bound** in ϕ_3 by the quantifier $\forall x_0$.

Lecture 8 - 8/8