9. Interpretations and Assignments

We refer to a subset £ C £FOPC containing
all the logical symbols, but possibly only some
non-logical as a language (or first-order lan-

guage).

9.1 Definition Let £ be a language. An in-
terpretation of £ is an L-structure A =

(A; (fa) rerct(r) (PA) pepred(c)r (€A)ccConst(r))
I.e.

x A IS a non-empty set, the domain of A,

x for each k-ary function symbol f = fék) e L,
fa: AF — Ais a function

x for each k-ary predicate symbol P = Pé“ e L,
P, is a k-ary relation on A, i.e. P4 C AF
(write Py(a1,...,a) for (aq,...,a;) € Py)

* for each c € Const(L): cy € A.

Lecture 9 - 1/8

9.2 Definition
Let £ be a language and let A = (A;...) be an
L-structure.

(1) An assignment in A is a function
v:{zxg,x1,...} & A

(2) v determines an assignment
v="oy: Terms(L) — A

defined recursively as follows:
(i) v(x;) =v(x;) for alli =0,1,...
(ii) v(c) = cy for each ¢ € Const(L)

each f = fé,’” € Fct(L), where the v(¢;) are
already defined.

(3) v determines a valuation
v="oy: Form(L) —» {T, F}
as follows:

Lecture 9 - 2/8

(i) for atomic formulas ¢ € Form(£L):
- for each P = Pék) c Pred(£) and for all t €
Term(L)

(Pl i) = 1 gines)

- for all t1,tp € Term(L):

- . . T if ﬂ(tl) = ﬂ(tg)
oty = t2) = { F otherwise

(ii) for arbitrary formulas ¢ € Form(L) recur-
sively:

- o(—) =T iff o(yp) = F

-v(p = x) =T iffo(yp) =F or v(x) =T

- v(Va;0p) = T iff v*(¢p) = T for all assignments
v* agreeing with v except possibly at z;.

Notation: Write A |= ¢[v] for v 4(¢) =T,
and say ‘¢ is true in A under the assignment
V=104

Lecture 9 - 3/8

Last time:
L, A=(A;..)), v, A= o]

9.3 Some abbreviations

We use ... | as abbreviation for ...
(aV) ((= B) — B)
(a N B) —(ma vV —8)
(a < B) (= B)AN(B—))
Ela:iqb —u‘v’acz-—lgb

9.4 Lemma
For any L-structure A and any assignment v
in A one has

A= (aVvB)v] iff A= alv] or A= B[]
AE= (anpB)v] iff A= alv] and A = B[]
AE (o« B)[v] iff v(a) =v(B)
A = dx;¢[v] iff for some assignment

v* agreeing with v
except possibly at x;
A = ¢[v*]

Proof: easy

Lecture 9 - 4/8

9.5 Example

Let f be a binary function symbol, let ‘L = {f}’
(need only list non-logical symbols), consider
A = (Z;-) as L-structure, let v be the assign-
ment v(x;) =i(e Z) for: =0,1,..., and let

¢ = VaoVr1(f(z0,22) = f(x1,22) = o = 1)
Then

A = ¢[v]
iff for all v* with v*(x;) =1 for ¢ = 0O

A = Va1 (f(zg,z2) = f(x1,22) = 0 = 21)[v"]
iff for all v** with v**(x;) = ¢ for i 20,1

A= (f(zg,z2) = f(21,22) = 20 = 1) [V™]
iff for all v** with v**(x;) = ¢ for i 20,1

v (zg) - v (x2) = v (21) - v (22)

implies v**(xg) = v (x1)
iff for all a,b € Z, a-2=0>b-2 implies a = b,

which is true.

So A = ¢[u]

Lecture 9 - 5/8

However, if v/(xz;) = 0O for all ¢, then would have
finished with

... iff for all a,b€ Z, a-0=>5b-0 implies a = b,
which is false. So A & ¢[v].

9.6 Example
Let P be a unary predicate symbol, L = {P},
A an L-structure, v any assignment in A, and

¢ = ((VzoP(zg) — P(x1)).

Then A = ¢[v].
Proof:
A = ¢lv] iff

A |= V:UOP(xo)[’U] implies A |: P(xl)[v].

Now suppose A = VzgP(xg)[v]. Then for all
v* which agree with v except possibly at xq,

P(zo)[v*].

In particular, for v*(x;) = zgi)) :: z f 8
1 p—

we have Py(v*(xg)), and hence Py(v(z1)),
I.e. P(:Bl)[’v]

Lecture 9 - 6/8

9.7 Definition
Let £ be any first-order language.

e An L-formula ¢ is logically valid (‘= ¢') if
A = ¢[v] for all L-structures A and for all
assignments v in A.

e ¢ € Form(L) is satisfiable if A = ¢[v] for
some L-structure A and for some assign-
ment v in A.

e For ' C Form(£) and ¢ € Form(L), ¢ is a
logical consequence of I (‘I = ¢") if for
all L-structures A and for all assignments
v in A with A = ¢[v] for all ¢ € ', also
A = ¢[v].

e $,9 € Form(L) are logically equivalent if
{¢} = v and {y} = ¢.

Example: = ¢ for ¢ from 9.6

Lecture 9 - 7/8

Note:
The symbol ‘&=’ is now used in two ways:

‘I = ¢’ means: ¢ a logical consequence of I

‘A = ¢[v]” means: ¢ is satisfied in the L-structure
A under the assignment v

This shouldn’t give rise to confusion, since it
will always be clear from the context whether
there is a set I of L-formulas or an L-structure
A in front of ‘=".

Lecture 9 - 8/8

