
10. Free and bound variables

Recall Example 9.5: The formula

φ = ∀x0∀x1(f(x0, x2)
.
= f(x1, x2) → x0

.
= x1)

• is true in 〈Z; ·〉 under any assignment v with

v(x2) = 2

• but false when v(x2) = 0.

Whether or not A |= φ[v] only depends on

v(x2), not on v(x0) or v(x1).

The reason is: the variables x0, x1 are covered

by a quantifier (∀); we say they are “bound”

(definition to follow!).

But the occurrence of x2 is not “bound” by a

quanitifer, but rather is “free”.
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10.1 Definition

Let L be a first-order language, φ an L-formula,

and x ∈ {x0, x1, . . .} a variable occurring in φ.

An occurrence of x in φ is free, if

(i) φ is atomic, or

(ii) φ = ¬ψ resp. φ = (χ → ρ) and x occurs

free in ψ resp. in χ or ρ, or

(iii) φ = ∀xiψ, x occurs free in ψ, and x 6= xi.

Every other occurrence of x in φ is called bound.

In particular, if x = xi and φ = ∀xiψ, then x is

bound in φ.

10.2 Example

(∃x0P ( x0︸︷︷︸

b

, x1︸︷︷︸

f

)∨∀x1(P ( x0︸︷︷︸

f

, x1︸︷︷︸

b

) → ∃x0P ( x0︸︷︷︸

b

, x1︸︷︷︸

b

)))
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10.3 Lemma

Let L be a language, let A be an L-structure,

let v, v′ be assignments in A and let φ be an

L-formula.

Suppose v(xi) = v′(xi) for every variable xi
with a free occurrence in φ.

Then

A |= φ[v] iff A |= φ[v′].

Proof:

For φ atomic: exercise

Now use induction on the length of φ:

- φ = ¬ψ and φ = (χ→ ρ): easy

- φ = ∀xiψ:

IH: Assume the Lemma holds for ψ.

Let

Free (φ):={xj | xj occurs free in φ}

Free (ψ):={xj | xj occurs free in ψ}
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⇒ xi 6∈ Free(φ) and

Free(φ) = Free(ψ) \ {xi}

Assume A |= ∀xiψ[v] (⋆)

to show: for any v⋆ agreeing with v′ except

possibly at xi: A |= ψ[v⋆].

for all xj ∈ Free(φ):

v⋆(xj) = v(xj) = v′(xj).

Let v+(xj) :=

{

v(xj) if j 6= i

v⋆(xj) if j = i

Then v+ agrees with v except possibly at xi.

Hence, by (⋆), A |= ψ[v+].

But v⋆(xj) = v+(xj) for all xj ∈ Free(ψ).

⇒ by IH, A |= ψ[v⋆] �
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10.4 Corollary

Let L be a language, α, β ∈ Form(L). Assume

the variable xi has no free occurrence in α.

Then

|= (∀xi(α→ β) → (α→ ∀xiβ)).

Proof:

Let A be an L-structure and let v be an as-

signment in A such that

A |= ∀xi(α→ β)[v] (⋆)

to show: A |= (α→ ∀xiβ)[v].

So suppose A |= α[v]

to show: A |= ∀xiβ[v].

So let v⋆ be an assignment agreeing with v

except possibly at xi.

We want: A |= β[v⋆]

xi is not free in α ⇒10.3 A |= α[v⋆]

(⋆) ⇒ A |= (α→ β)[v⋆]

⇒ A |= β[v⋆] �
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10.5 Definition

A formula φ without free (occurrence of) vari-

ables is called a statement or a sentence.

If φ is a sentence then, for any L-structure A,

whether or not A |= φ[v] does not depend on

the assignment v.

So we write A |= φ if A |= φ[v] for some/all v.

Say: φ is true in A, or A is a model of φ.

( ‘Model Theory’)
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10.6 Example

Let L = {f, c} be a language, where f is a

binary function symbol, and c is a constant

symbol.

Consider the sentences (we write x, y, z instead

of x0, x1, x2)

φ1 : ∀x∀y∀zf(x, f(y, z))
.
= f(f(x, y), z)

φ2 : ∀x∃y(f(x, y)
.
= c ∧ f(y, x)

.
= c)

φ3 : ∀x(f(x, c)
.
= x ∧ f(c, x)

.
= x)

and let φ = φ1 ∧ φ2 ∧ φ3.

Let A = 〈A; ◦; e〉 be an L-structure (i.e. ◦ is an

interpretation of f , and e is an interpretation

of c.)

Then A |= φ iff A is a group.
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10.7 Example

Let L = {E} be a language with E = P
(2)
i a

binary relation symbol. Consider

χ1 : ∀xE(x, x)
χ2 : ∀x∀y(E(x, y) ↔ E(y, x))
χ3 : ∀x∀y∀z(E(x, y) → (E(y, z) → E(x, z)))

Then for any L-structure 〈A;R〉:

〈A;R〉 |= (χ1 ∧ χ2 ∧ χ3) iff

R is an equivalence relation on A.

Note: Most mathematical concepts can be

captured by first-order formulas.
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10.8 Example
Let P be a 2-place (i.e. binary) predicate sym-
bol, L := {P}. Consider the statements

ψ1 : ∀x∀y(P (x, y) ∨· x
.
= y ∨· P (y, x))

(∨· means either - or exclusively:
(α ∨· β) :⇔ ((α ∨ β) ∧ ¬(α ∧ β)))

ψ2 : ∀x∀y∀z((P (x, y) ∧ P (y, z)) → P (x, z))
ψ3 : ∀x∀z(P (x, z) → ∃y(P (x, y) ∧ P (y, z)))
ψ4 : ∀y∃x∃z(P (x, y) ∧ P (y, z))

These are the axioms for a dense linear order
without endpoints. Let ψ = (ψ1 ∧ . . . ∧ ψ4).
Then 〈Q;<〉 |= ψ and 〈R;<〉 |= ψ.

However: The Dedekind Completeness of
〈R;<〉 is not captured in 1st-order terms using
the langauge L, but rather in 2nd-order terms,
where also quantification over subsets, rather
than only over elements of R is used:

∀A,B ⊆ R((A << B) → ∃c ∈ R(A ≤≤ {c} ≤≤ B),

where A << B means that a < b for every a ∈ A

and every b ∈ B etc. We will see it cannot be
captured in first order terms.
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10.9 Example: ACF0: Algebraically closed

fields of characteristic zero.

L := {+,×,0,1}, language of rings

Commutative, associative, distributive laws; the

existence of multiplicative inverse of non-zero

elements;

Characteristic 0: 1+ 1 6= 0,1+ 1+ 1 6= 0, . . .

For each n = 2,3,4, . . . a sentence ψn asserting

that every non-constant polynomial has a root.

(This is automatic for n = 1).

∀a0 . . .∀an[¬an = 0 → ∃x(anxn+ . . .+ a0 = 0)]

This set of axioms is complete and decidable.

(Complete: every sentence φ, either φ or ¬φ is

a logical consequence of the axioms.)

Examples 10.7, 10.8, 10.9 are of the type which

will be explored in Part C Model Theory.
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10.10 Example: Peano Arithmetic (PA)

This is historically a very important system,

studied in Part C Godel’s Incompleteness Thms.

It is not complete and not decidable.

L := {0,+,×, s}, A = 〈N; 0,+,×, s : n 7→ n+1〉

The unary function s is called the “successor

function”. Suitable sentences express: it is

injective and its range is everything except 0.

Suitable sentences give axioms for +,×.

Induction: for every unary formula φ the axiom

[φ(0) ∧ ∀x(φ(x) → φ(s(x)))] → ∀yφ(y)

This is weaker than the second order system

proposed by Peano which states induction for

every subset of N.
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10.11 Example: Set Theory

Several ways of axiomatizing a system for Set

Theory, in which all (?) mathematics can be

carried out.

The most popular system ZFC is introduced

in B1.2 Set Theory, and more formally in Part

C Axiomatic Set Theory. ZFC has:

L := {∈}, a binary relation for set membership

Axioms: existence of empty set, pairs, unions,

power set,.....

10.12 Example: Second order logic

Lose completeness, compactness.
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