10. Free and bound variables

Recall Example 9.5: The formula
¢ = VeoVr1(f(zg,x2) = f(z1,22) = 20 = 1)

e istruein (Z; ) under any assignment v with
v(zn) = 2

e but false when v(xzs) = 0.

Whether or not A |= ¢[v] only depends on
v(xo), not on v(xg) or v(xq).

The reason is: the variables xg,x1 are covered
by a quantifier (V); we say they are “bound”
(definition to follow!).

But the occurrence of x5 is not “bound” by a
quanitifer, but rather is ‘free’ .
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10.1 Definition
Let £ be a first-order language, ¢ an L-formula,
and z € {xqg,x1,...} a variable occurring in ¢.

An occurrence of x in ¢ is free, if

(i) ¢ is atomic, or

(ii) ¢ = = resp. ¢ = (x — p) and x occurs
free in 1 resp. in x or p, or

(iii) ¢ = Vax;¢, x occurs free in 1, and x #= x;.

Every other occurrence of x in ¢ is called bound.

In particular, if £ = x; and ¢ = Vx;v¢, then x is
bound in ¢.

10.2 Example
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10.3 Lemma

Let L be a language, let A be an L-structure,
let v, v/ be assignments in A and let ¢ be an
L-formula.

Suppose v(x;) = v'(x;) for every variable z;
with a free occurrence in ¢.

Then
A = ¢[v] iff A= ¢[v].

Proof:
For ¢ atomic: exercise

Now use induction on the length of ¢:
- ¢ =) and ¢ = (x — p): easy
- ¢ = VCUﬂﬂ

IH: Assume the Lemma holds for .

et
Free (¢):={z; | x; occurs free in ¢}
Free (¢):={z; | x; occurs free in v}

Lecture 10 - 3/12



= x; & Free(¢) and

Free(¢) = Free(y) \ {;}

Assume A = Vz;¢[v] (%)
to show: for any v* agreeing with v’ except
possibly at x;: A = ¢[v*].

for all z; € Free(¢):
v* () = v(z;) = v’(a:j).
Y if £
Let v (z.:) := 'U(m]) l J .
(z5) {v*(azj) ifj =1
Then vT agrees with v except possibly at z;.

Hence, by (%), A = ¢[vT].

But v*(z;) = ’U+(£Uj) for all z; € Free(y).
= by IH, A = ¢¥[v*] O
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10.4 Corollary

Let £ be a language, o, 3 € Form(L). Assume
the variable x; has no free occurrence in «.
T hen

= (Vzi(a = B) = (o = Vx;8)).

Proof:

Let A be an L-structure and let v be an as-
signment in A such that

A EVzi(a — B)[v] (%)

to show: A = (a — Vx;8)[v].

So suppose A = alv]
to show: A = Vz,;8[v].

So let v* be an assignment agreeing with v
except possibly at x;.
We want: A = B[v*]

x; is not free in a =103 A = af[v*]
(x) = A= (o= B)[v*]
= A = B[v*] (]
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10.5 Definition

A formula ¢ without free (occurrence of) vari-
ables is called a statement or a sentence.

If ¢ is a sentence then, for any L-structure A,
whether or not A = ¢[v] does not depend on
the assignment v.

So we write A |= ¢ if A = ¢[v] for some/all v.

Say: ¢ is true in A, or A is a model of ¢.

(~ ‘Model Theory’)
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10.6 Example

Let £L = {f,c} be a language, where f is a
binary function symbol, and ¢ is a constant
symbol.

Consider the sentences (we write z, vy, z instead
of 330,$1,33‘2)

¢1: VaVyVzf(zx, f(y,z)) = f(f(z,y),2)
¢o : VaeIy(f(z,y) =cA f(y,x) = c)
3 Ve(f(z,c) =z A f(c,z) =)

and let ¢ = ¢1 A P2 A\ ¢3.
Let A= (A;o0;e) be an L-structure (i.e. o is an

interpretation of f, and e is an interpretation
of ¢.)

Then A = ¢ iff A is a group.
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10.7 Example
Let £ = {E} be a language with E = Pi(Q) a
binary relation symbol. Consider

X1 . VaE(x,x)

x2 @ VaVy(E(z,y) < E(y,x))

x3 . VeVyVz(E(xz,y) — (E(y,z) = E(x,2)))
Then for any L-structure (A; R):
(A, R) = (x1 A x2 A x3) iff
R is an equivalence relation on A.

Note: Most mathematical concepts can be
captured by first-order formulas.
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10.8 Example
Let P be a 2-place (i.e. binary) predicate sym-
bol, £ := {P}. Consider the statements

P10 Vavy(P(z,y) vV x =y Vv P(y,x))
(Vv means either - or exclusively:
(aVv B) & ((aVB)A-(aAp)))
Yo o VaVyVz((P(x,y) AN P(y,z)) — P(x,2))
Y3 o VaVz(P(x,z) — Jy(P(x,y) AN P(y,z)))
Ya o Vydxdz(P(x,y) N P(y, z))
These are the axioms for a dense linear order
without endpoints. Let ¢ = (¢p1 A ... A1g).
Then (Q; <) = v and (R; <) = .

However: The Dedekind Completeness of
(R; <) is not captured in 1st-order terms using
the langauge L, but rather in 2nd-order terms,
where also quantification over subsets, rather
than only over elements of R is used:

VA, BCR((A < B) - dce R(A KL {c} K B),

where A << B means that a < b for every a € A
and every b € B etc. We will see it cannot be
captured in first order terms.
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10.9 Example: ACFq: Algebraically closed
fields of characteristic zero.

L:={+4, x,0,1}, language of rings

Commutative, associative, distributive laws; the
existence of multiplicative inverse of non-zero
elements;

Characteristic 0: 1+1+#0,14+1+1#0,...

For eachn = 2,3,4,... a sentence v, asserting
that every non-constant polynomial has a root.
(This is automatic forn =1).

Vag...Vap[—ap = 0 — Jz(anz™ 4+ ...+ ag = 0)]

T his set of axioms is complete and decidable.
(Complete: every sentence ¢, either ¢ or —¢ is
a logical consequence of the axioms.)

Examples 10.7, 10.8, 10.9 are of the type which
will be explored in Part C Model Theory.
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10.10 Example: Peano Arithmetic (PA)

This is historically a very important system,
studied in Part C Godel’'s Incompleteness Thms.
It is not complete and not decidable.

L:={{0,4,%x,s}, A=(N;0,4+,%X,s :n+—>n-+1)

The unary function s is called the "successor
function”. Suitable sentences express: it is
injective and its range is everything except O.

Suitable sentences give axioms for 4+, x.

Induction: for every unary formula ¢ the axiom

[#(0) AVz(é(z) = ¢(s(x)))] — Yye(y)

This is weaker than the second order system
proposed by Peano which states induction for
every subset of N.
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10.11 Example: Set Theory

Several ways of axiomatizing a system for Set
Theory, in which all (7?) mathematics can be
carried out.

The most popular system ZFC is introduced
in B1.2 Set Theory, and more formally in Part
C Axiomatic Set Theory. ZFC has:

L = {€}, a binary relation for set membership

Axioms: existence of empty set, pairs, unions,
power set,.....

10.12 Example: Second order logic

L. ose completeness, compactness.
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