11. Substitution

Goal: Given $\phi \in \text{Form}(\mathcal{L})$ and $x_i \in \text{Free}(\phi)$ - want to replace x_i by a term t to obtain a new formula $\phi[t/x_i]$

(read: ' ϕ with x_i replaced by t') - should have { $\forall x_i \phi$ } $\models \phi[t/x_i]$

11.1 Example

Let $\mathcal{L} = \{f; c\}$ and let ϕ be $\exists x_1 f(x_1) \doteq x_0$. \Rightarrow Free $(\phi) = \{x_0\}$ and $\forall x_0 \phi'$, i.e. $\forall x_0 \exists x_1 f(x_1) \doteq x_0'$ says that f is **onto** (surjective).

- if t = c then $\phi[t/x_0]$ is $\exists x_1 f(x_1) \doteq c$. **OK** - but if $t = x_1$ then $\phi[t/x_0]$ is $\exists x_1 f(x_1) \doteq x_1$, stating the existence of a fixed point of f: **Problem:** there are fixed point free onto functions, e.g. '+1' on \mathbb{Z} .

Reason for problem: the variable x_1 in t has become unintentionally bound in the substitution.

To avoid this we define:

Lecture 11 - 1/8

11.2 Definition

For $\phi \in \text{Form}(\mathcal{L})$, for any variable x_i (not necessarily in $\text{Free}(\phi)$) and for any term $t \in \text{Term}(\mathcal{L})$, define the phrase

't is free for x_i in ϕ '

and the substitution

```
\phi[t/x_i] ('\phi with x_i replaced by t')
```

recursively as follows:

(i) if ϕ is atomic, then t is free for x_i in ϕ and $\phi[t/x_i]$ is the result of replacing *every* occurrence of x_i in ϕ by t.

(ii) if $\phi = \neg \psi$ then t is free for x_i in ϕ iff t is free for x_i in ψ . In this case, $\phi[t/x_i] = \neg \alpha$, where $\alpha = \psi[t/x_i]$.

Lecture 11 - 2/8

(iii) if
$$\phi = (\psi \to \chi)$$
 then
 t is free for x_i in ϕ iff
 t is free for x_i in both ψ and χ .
In this case, $\phi[t/x_i] = (\alpha \to \beta)$,
where $\alpha = \psi[t/x_i]$ and $\beta = \chi[t/x_i]$.

(iv) if
$$\phi = \forall x_j \psi$$
 then
t is free for x_i in ϕ

if i = j or

if $i \neq j$, and x_j does not occur in t, and t is free for x_i in ψ .

In this case $\phi[t/x_i] = \begin{cases} \phi & \text{if } i = j \\ \forall x_j \alpha & \text{if } i \neq j, \end{cases}$ where $\alpha = \psi[t/x_i]$.

11.3 Example

Let $\mathcal{L} = \{f, g\}$ and let ϕ be $\exists x_1 f(x_1) \doteq x_0$. $\Rightarrow g(x_0, x_2)$ is free for x_0 in ϕ and $\phi[g(x_0, x_2)/x_0]$ is $\exists x_1 f(x_1) \doteq g(x_0, x_2)$, but $g(x_0, x_1)$ is not free for x_0 in ϕ .

11.4 Lemma

Let \mathcal{L} be a first-order language, \mathcal{A} an \mathcal{L} -structure, $\phi \in Form(\mathcal{L})$ and t a term free for the variable x_i in ϕ . Let v be an assignment in \mathcal{A} and define

$$v'(x_j) := \begin{cases} v(x_j) & \text{if } j \neq i \\ \widetilde{v}(t) & \text{if } j = i \end{cases}$$

Then $\mathcal{A} \models \phi[v']$ iff $\mathcal{A} \models \phi[t/x_i][v]$.

Proof: **1.** For $u \in \text{Term}(\mathcal{L})$ let

 $u[t/x_i] :=$ the term obtained by replacing each occurrence of x_i in u by t

 $\Rightarrow \tilde{v'}(u) = \tilde{v}(u[t/x_i])$ (Exercise)

Lecture 11 - 4/8

2. If ϕ is **atomic**, say

 $\phi = P(t_1, \dots, t_k)$ for some $P = P_i^{(k)} \in \operatorname{Pred}(\mathcal{L})$ then

$$\begin{split} \mathcal{A} &\models \phi[v'] \\ \text{iff} \quad P_{\mathcal{A}}(\tilde{v'}(t_1), \dots, \tilde{v'}(t_k)) & \text{by def. '} \models' \\ \text{iff} \quad P_{\mathcal{A}}(\tilde{v}(t_1[t/x_i]), \dots, \tilde{v}(t_k[t/x_i])) & \text{by 1.} \\ \text{iff} \quad \mathcal{A} &\models P(t_1[t/x_i], \dots, t_k[t/x_i])[v] & \text{by def. '} \models' \\ \text{iff} \quad \mathcal{A} &\models \phi[t/x_i][v] \end{split}$$

Similarly, if ϕ is $t_1 \doteq t_2$.

3. Induction step

The cases \neg and \rightarrow are routine.

 \rightsquigarrow the only interesting case is $\phi = \forall x_j \psi$.

IH: Lemma holds for ψ .

Case 1: j = i $\Rightarrow \phi[t/x_i] = \phi$ by Definition 11.2.(iv)

$$\begin{aligned} x_i &= x_j \notin \operatorname{Free}(\phi) \\ \Rightarrow v \text{ and } v' \text{ agree on all } x \in \operatorname{Free}(\phi) \\ \Rightarrow \text{ by Lemma 10.3,} \\ \mathcal{A} &\models \phi[v'] \text{ iff } \mathcal{A} \models \phi[v] \text{ iff } \mathcal{A} \models \phi[t/x_i][v] \end{aligned}$$

Case 2: $j \neq i$ ' \Rightarrow ': Suppose $\mathcal{A} \models \forall x_j \psi[v']$ (*)

to show: $\mathcal{A} \models \forall x_j \psi[t/x_i][v]$

Lecture 11 - 6/8

So let v^* agree with v except possibly at x_j . to show: $\mathcal{A} \models \psi[t/x_i][v^*]$

Define $v^{\star'}(x_k) := \begin{cases} v^{\star}(x_k) & \text{if } k \neq i \\ \widetilde{v^{\star}}(t) & \text{if } k = i \end{cases}$ t is free for x_i in $\phi \Rightarrow$ t is free for x_i in ψ and t does not contain x_j .

IH \Rightarrow enough to show: $\mathcal{A} \models \psi[v^{\star'}]$

 $v^{\star\prime}$ and v' agree except possibly at x_i and x_j . But, in fact, they *do* agree at x_i :

$$v'(x_i) = \widetilde{v}(t) = \widetilde{v^{\star}}(t) = v^{\star'}(x_i),$$

where the 2nd equality holds, because v and v^* agree except possibly at x_j , which does not occur in t.

So $v^{\star\prime}$ and v' agree except possibly at $x_j \Rightarrow by (\star), \ \mathcal{A} \models \psi[v^{\star\prime}]$ as required.

'
$$\leftarrow$$
': similar.

Lecture 11 - 7/8

11.5 Corollary For any $\phi \in Form(\mathcal{L})$, $t \in Term(\mathcal{L})$,

$$\models (\forall x_i \phi \to \phi[t/x_i]),$$

provided that the term t is free for x_i in ϕ .

Proof: Let \mathcal{A} be an \mathcal{L} -structure and let v be an assignment in \mathcal{A} .

Assume
$$\mathcal{A} \models \forall x_i \phi[v]$$
 (*)
to show: $\mathcal{A} \models \phi[t/x_i][v]$

By Lemma 11.4, it suffices to show $\mathcal{A} \models \phi[v']$, where

$$v'(x_j) := \begin{cases} v(x_j) & \text{for } j \neq i \\ \widetilde{v}(t) & \text{for } j = i. \end{cases}$$

Since v and v' agree except possibly at x_i , this follows from (\star) .

Lecture 11 - 8/8