12. A formal system for Predicate Calculus

12.1 Definition

Associate to each first-order language \mathcal{L} the formal system $K(\mathcal{L})$ with the following axioms and rules (for any $\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}), t \in \text{Term}(\mathcal{L})$):

Axioms

A1 $(\alpha \rightarrow (\beta \rightarrow \alpha))$ A2 $((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))$ A3 $((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$ A4 $(\forall x_i \alpha \rightarrow \alpha[t/x_i])$, where *t* is free for x_i in α A5 $(\forall x_i (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x_i \beta))$ provided that

A5 $(\forall x_i(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x_i\beta))$, provided that $x_i \notin \text{Free}(\alpha)$

A6 $\forall x_i \ x_i \doteq x_i$

A7 $(x_i \doteq x_j \rightarrow (\phi \rightarrow \phi'))$, where ϕ is *atomic* and ϕ' is obtained from ϕ by replacing some (not necessarily all) occurrences of x_i in ϕ by x_j

Lecture 12 - 1/8

Rules

MP (Modus Ponens) From α and $(\alpha \rightarrow \beta)$ infer β

 \forall (Generalisation) From α infer $\forall x_i \alpha$

Thinning Rule see 12.6

 ϕ is a **theorem of** $K(\mathcal{L})$ (write ' $\vdash \phi$ ') if there is a sequence (a **derivation**, or a **proof**) ϕ_1, \ldots, ϕ_n of \mathcal{L} -formulas with $\phi_n = \phi$ such that each ϕ_i either is an axiom or is obtained from earlier ϕ_i 's by MP or \forall .

For $\Gamma \subseteq \text{Form}(\mathcal{L})$, $\phi \in \text{Form}(\mathcal{L})$ define similarly that ϕ is **derivable in** $K(\mathcal{L})$ from the **hypotheses** Γ (write ' $\Gamma \vdash \phi$ '), except that the ϕ_i 's may now also be formulas from Γ , but we make the restriction that \forall may only be used for variables x_i not occurring free in any formula in Γ .

Lecture 12 - 2/8

12.2 Soundness Theorem for Pred. Calc. If $\Gamma \vdash \phi$ then $\Gamma \models \phi$.

Proof: Induction on length of derivation

Clear that A1, A2, and A3 are logically valid. So are A4 and A5 by Cor. 11.5 resp. Cor. 10.4.

Also A6 is logically valid: easy exercise.

A7: Let \mathcal{A} be an \mathcal{L} -structure and let v be any assignment in \mathcal{A} . Suppose that

 $\mathcal{A} \models x_i \doteq x_j[v]$ and $\mathcal{A} \models \phi[v]$.

We want to show that $\mathcal{A} \models \phi'[v]$ (with ϕ atomic).

Now $v(x_i) = v(x_j)$ $\Rightarrow \tilde{v}(t') = \tilde{v}(t)$ for any term t' obtained from tby replacing some of the x_i by x_j (easy induction on terms)

Lecture 12 - 3/8

If ϕ is $P(t_1, \ldots, t_k)$ then ϕ' is $P(t'_1, \ldots, t'_k)$. $\mathcal{A} \models \phi[v]$ iff $P_{\mathcal{A}}(\tilde{v}(t_1), \ldots, \tilde{v}(t_k))$ iff $P_{\mathcal{A}}(\tilde{v}(t'_1), \ldots, \tilde{v}(t'_k))$ iff $\mathcal{A} \models P(t'_1, \ldots, t'_k)[v]$ iff $\mathcal{A} \models \phi'[v]$ as required Similarly, if ϕ is $t_1 \doteq t_2$.

So now all axioms are logically valid.

MP is sound: for any \mathcal{A} , v $\mathcal{A} \models \alpha \ [v]$ and $\mathcal{A} \models (\alpha \rightarrow \beta)[v]$ imply $\mathcal{A} \models \beta[v]$

Generalisation: IH for any \mathcal{A} , vif $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma$ then $\mathcal{A} \models \alpha[v]$ (*)

to show: $\mathcal{A} \models \forall x_i \alpha[v]$ for such \mathcal{A} , v.

So let v^* agree with v except possibly at x_i . $x_i \notin \operatorname{Free}(\psi)$ for any $\psi \in \Gamma$ $\Rightarrow \mathcal{A} \models \psi[v^*]$ for all $\psi \in \Gamma$ (by Lemma 10.3) $\Rightarrow \mathcal{A} \models \alpha[v^*]$ (by (*)) $\Rightarrow \mathcal{A} \models \forall x_i \alpha[v]$ as required. \Box

Lecture 12 - 4/8

12.3 Deduction Theorem for Pred. Calc.

If $\Gamma \cup \{\psi\} \vdash \phi$ then $\Gamma \vdash (\psi \rightarrow \phi)$.

Proof: same as for prop. calc. (Theorem 6.6) with one more step in the induction (on the length of the derivation).

IH: $\Gamma \vdash (\psi \rightarrow \phi_j)$ to show: $\Gamma \vdash (\psi \rightarrow \forall x_i \phi_j)$, where generalisation (\forall) has been used to infer $\forall x_i \phi_j$ under the hypotheses $\Gamma \cup \{\psi\}$

 $\Rightarrow x_i \notin \operatorname{Free}(\gamma) \text{ for any } \gamma \in \Gamma \text{ and } x_i \notin \operatorname{Free}(\psi)$ $\Rightarrow \text{ by IH and } \forall: \ \Gamma \vdash \forall x_i(\psi \to \phi_j)$ $\mathbf{A5} \vdash (\forall x_i(\psi \to \phi_j) \to (\psi \to \forall x_i\phi_j)), \text{ since } x_i \notin$ $\operatorname{Free}(\psi)$ $\Rightarrow \text{ by } \mathbf{MP}, \ \Gamma \vdash (\psi \to \forall x_i\phi_j) \text{ as required.}$

Lecture 12 - 5/8

12.4 Tautologies

If A is a tautology of the Propositional Calculus with propositional variables among p_0, \ldots, p_n , and if $\psi_0, \ldots, \psi_n \in \text{Form}(\mathcal{L})$ are formulas of Predicate Calculus, then the formula A' obtained from A by replacing each p_i by ψ_i is a **tautology of** \mathcal{L} :

Since A1, A2, A3 and MP are in $K(\mathcal{L})$, one also has $\vdash A'$ in $K(\mathcal{L})$.

May use the tautologies in derivations in $K(\mathcal{L})$.

Lecture 12 - 6/8

12.5 Example Swapping variables

Suppose x_j does not occur in ϕ . Then $\{\forall x_i \phi\} \vdash \forall x_j \phi[x_j/x_i]$

1	$orall x_i \phi$	$[\in \Gamma]$
2	$(\forall x_i \phi \to \phi[x_j/x_i])$	[A4]
	$\phi[x_j/x_i]$	[MP 1,2]
4	$\forall x_j \phi[x_j/x_i]$	[\]

where \forall may be applied in line 4, since x_j does not occur in ϕ .

This proof would not work if $\Gamma = \{ \forall x_i \phi, x_j \doteq x_j \}$ (say). Hence need (besides **MP** and (\forall))

12.6 Thinning Rule

If
$$\Gamma \vdash \phi$$
 and $\Gamma' \supseteq \Gamma$ then $\Gamma' \vdash \phi$.

Lecture 12 - 7/8

12.7 Example

$$(\exists x_i \phi \to \psi) \vdash \forall x_i (\phi \to \psi),$$

where $x_i \notin \text{Free}(\psi)$.

Proof: Let
$$\Gamma = \{(\exists x_i \phi \rightarrow \psi), \neg \psi\}$$
 $[\in \Gamma]$ 1 $(\neg \forall x_i \neg \phi \rightarrow \psi)$ $[\in \Gamma]$ 2 $((\neg \forall x_i \neg \phi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \forall x_i \neg \phi))$ $[taut.]$ 3 $(\neg \psi \rightarrow \forall x_i \neg \phi)$ $[MP 1,2]$ 4 $\neg \psi$ $[\in \Gamma]$ 5 $\forall x_i \neg \phi$ $[MP 3,4]$ 6 $(\forall x_i \neg \phi \rightarrow \neg \phi)$ $[A4]$ 7 $\neg \phi$ $[MP 5,6]$

Note that in line 6, x_i is free for x_i in ϕ .

Hence $\Gamma \vdash \neg \phi$. So $(\exists x_i \phi \rightarrow \psi) \vdash (\neg \psi \rightarrow \neg \phi) \quad [DT]$ $(\exists x_i \phi \rightarrow \psi) \vdash (\phi \rightarrow \psi) \quad [A3, MP]$ $(\exists x_i \phi \rightarrow \psi) \vdash \forall x_i (\phi \rightarrow \psi) \quad [\forall]$

Lecture 12 - 8/8