12. A formal system for Predicate
Calculus

12.1 Definition

Associate to each first-order language L the
formal system K (L) with the following axioms
and rules (for any a, 8,v € Form(L), t € Term(L)):

AXxioms

Al (o — (B — o))

A2 ((a—= (B—=7)) = (a—=B) = (a—17)))
A3 ((—8 = —a) = (o — B))

A4 (Vr,a — «aft/x;]), where t is free for z; in «
A5 (Vz,(a — B8) — (a — Vz;8)), provided that
x; & Free(a)

A6 \V/ZCZ' Ly = Ly

A7 (z; = x; — (¢ — ¢')), where ¢ is atomic
and ¢’ is obtained from ¢ by replacing some
(not necessarily all) occurrences of z; in ¢ by
Lj
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Rules

MP (Modus Ponens) From « and (a — B)
infer 3

vV (Generalisation) From « infer Vx;«
Thinning Rule see 12.6

¢ is a theorem of K (L) (write ‘' ¢') if there is
a sequence (a derivation, or a proof) ¢1,...,¢n
of L-formulas with ¢, = ¢ such that each ¢;
either is an axiom or is obtained from earlier
¢;'s by MP or V.

For ' C Form(L), ¢ € Form(L) define simi-
larly that ¢ is derivable in K(£) from the
hypotheses ' (write ‘" - ¢'), except that the
¢;'S may now also be formulas from [,

but we make the restriction that V may only
be used for variables x; not occurring free in
any formula in T .
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12.2 Soundness Theorem for Pred. Calc.
IfT" ¢ then I = ¢.

Proof: Induction on length of derivation

Clear that A1, A2, and A3 are logically valid.
So are A4 and A5 by Cor. 11.5 resp. Cor.
10.4.

Also A6 is logically valid: easy exercise.

A7: Let A be an L-structure and let v be any
assignment in A. Suppose that

A= z; = x;5[v] and A |= ¢[v].
We want to show that A |= ¢/[v] (with ¢ atomic).
Now v(z;) = v(x;)
= v(t") = v(¢) for any term ¢’ obtained from ¢

by replacing some of the x; by T
(easy induction on terms)
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If ¢ is P(t1,...,t;) then ¢’ is P(t],...,t.).

A= olv] iff Py(o(ty),...,0(¢))
iff PA(ﬂ(t’l),...,ﬂ(tz))
iff A= P(t],...,t)[v]
iff A = ¢'[v] as required

Similarly, if ¢ is t1 = t».
So now all axioms are logically valid.

MP is sound: for any A, v
AFE o [v] and A= (a — 8)[v] imply A = S[v]

Generalisation: IH for any A, v
if A= [v] for all ¢ € then A = afv] (%)

to show: A = Vz;alv] for such A, wv.

So let v* agree with v except possibly at z;.
x; & Free(y) for any ¢ € I

= A = ¢[v*] for all v € ' (by Lemma 10.3)
= A = alv*] (by (%))

= A = Vx;al[v] as required. O
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12.3 Deduction Theorem for Pred. Calc.
IfFTU{y} k¢ then T F (v — ¢).

Proof: same as for prop. calc. (Theorem 6.6)
with one more step in the induction (on the
length of the derivation).

IH: T+ (¢ — gbj)

to show: I = (¢ — Vx;0,),

where generalisation (V) has been used to infer
Vz;¢; under the hypotheses I U {¢}

= x; € Free(y) for any v € I' and x; € Free(v)
= by IH and V: I - Vz;(v) — ¢;)

A5 (\V/SUZ(¢ — qb]) — (@b — szqb])), since T; Q
Free(v)

= by MP, I - (¢ — Vx;¢;) as required.

O
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12.4 Tautologies

If A is a tautology of the Propositional Calculus
with propositional variables among pq,...,pn,
and if vYq,...,Yn, € Form(L) are formulas of
Predicate Calculus, then the formula A’ ob-
tained from A by replacing each p; by ; is a
tautology of L:

Since A1, A2, A3 and MP are in K(L), one
also has - A" in K(L).

May use the tautologies in derivations in K(L£).
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12.5 Example Swapping variables

Suppose z; does not occur in ¢.
Then {V$Z¢} = ‘v’a:]qﬁ[a:]/a:z]

1 Vzx;0 [e ]

2 (Vzip — dlxj/zi]) [A4]

3 ¢lx;/x4] [MP 1,2]
4 Vx;plxr;/x] [V]

where V may be applied in line 4, since T does
not occur in ¢.

T his proof would not work if
= {Vx;¢,z; = x;} (say). Hence need (besides
MP and (V))

12.6 Thinning Rule

IfFT ¢ and ' DT then I'' F ¢.
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12.7 Example

(Fzip = ) V(¢ — ),
where xz; & Free(v).

Proof: Let I = {(3z;¢ — ), )}

1 (=Vz;—¢ — ) [e ]

2 ((=Vz;=¢ — ) = (—p = Va;—¢)) [taut.]

3 (=Y — Vx;—0) [MP 1,2]
4 —lw [e ]

5 Vx,—¢ [MP 3,4]
6 (Vrim¢ — —¢) [A4]

7 o [MP 5,6]

Note that in line 6, x; is free for x; in ¢.

Hence I F =¢. SO

(Fz;¢p = ) F (—p = —¢) [DT]
(Fzip = ) = (¢ = ) [A3, MP]
(Fz;p — ) EVz; (¢ — ) [V]

O
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