13. The Completeness Theorem for Predicate Calculus

13.1 Theorem (Gödel)
Let
$$\Gamma \subseteq Form(\mathcal{L}), \ \phi \in Form(\mathcal{L}).$$

If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Two additional assumptions:

- Assume all γ ∈ Γ and φ are sentences the Theorem is true more generally, but the proof is much harder and applications are typically to sentences.
- Further assumption (for the start later we do the general case): $no \doteq -symbol$ in any formula of Γ or in ϕ .

Lecture 13 - 1/10

First Step

Call $\Delta \subseteq \text{Sent}(\mathcal{L})$ consistent if for no sentence ψ , both $\Delta \vdash \psi$ and $\Delta \vdash \neg \psi$.

13.2. To prove 13.1 it is enough to prove: (*) Every consistent set of sentences has a model.

i.e. Δ consistent \Rightarrow there is an \mathcal{L} -structure \mathcal{A} such that $\mathcal{A} \models \delta$ for every $\delta \in \Delta$.

Proof of 13.2: Assume $\Gamma \models \phi$ and assume (*). $\Rightarrow \Gamma \cup \{\neg \phi\}$ has no model $\Rightarrow_{(\star)} \Gamma \cup \{\neg \phi\}$ is not consistent $\Rightarrow \Gamma \cup \{\neg \phi\} \vdash \psi$ and $\Gamma \cup \{\neg \phi\} \vdash \neg \psi$ for some ψ $\Rightarrow_{DT} \Gamma \vdash (\neg \phi \rightarrow \psi)$ and $\Gamma \vdash (\neg \phi \rightarrow \neg \psi)$ for some ψ But $\Gamma \vdash ((\neg \phi \rightarrow \psi) \rightarrow ((\neg \phi \rightarrow \neg \psi) \rightarrow \phi))$ [taut.] $\Rightarrow \Gamma \vdash \phi$ [2xMP] $\Box_{13.2}$

Lecture 13 - 2/10

Second Step

We shall need an *infinite* supply of constant symbols.

To do this, let ϕ' be the formula obtained by replacing every occurrence of c_n by c_{2n} .

For $\Delta \subseteq \mathsf{Form}(\mathcal{L})$ let

$$\Delta' := \{ \phi' \mid \phi \in \Delta \}$$

Then

13.3 Lemma

(a) Δ consistent $\Rightarrow \Delta'$ consistent (b) Δ' has a model $\Rightarrow \Delta$ has a model.

Proof: Easy exercise. □

Lecture 13 - 3/10

Third Step

- Δ ⊆ Sent(L) is called maximal consistent if Δ is consistent, and for any ψ ∈ Sent(L): Δ ⊢ ψ or Δ ⊢ ¬ψ.
- $\Delta \subseteq \text{Sent}(\mathcal{L})$ is called **witnessing** if for all $\psi \in \text{Form}(\mathcal{L})$ with $\text{Free}(\psi) \subseteq \{x_i\}$ and with $\Delta \vdash \exists x_i \psi$ there is some $c_j \in \text{Const}(\mathcal{L})$ such that $\Delta \vdash \psi[c_j/x_i]$

13.4 To prove CT it is enough to show: Every maximal consistent witnessing set Δ of sentences has a model.

Lecture 13 - 4/10

For the proof of 13.4 we need 2 Lemmas:

13.5 Lemma

If $\Delta \subseteq Sent(\mathcal{L})$ is consistent, then for any sentence ψ , either $\Delta \cup \{\psi\}$ or $\Delta \cup \{\neg\psi\}$ is consistent.

Proof: Exercise – as for Propositional Calculus. □.

13.6 Lemma

Assume $\Delta \subseteq Sent(\mathcal{L})$ is consistent, $\exists x_i \psi \in Sent(\mathcal{L})$, $\Delta \vdash \exists x_i \psi$, and c_j is not occurring in ψ nor in any $\delta \in \Delta$.

Then $\Delta \cup \{\psi[c_j/x_i]\}$ is consistent.

Lecture 13 - 5/10

Proof:

Assume, for a contradiction, that there is some $\chi \in \text{Sent}(\mathcal{L})$ such that

 $\Delta \cup \{\psi[c_j/x_i]\} \vdash \chi \text{ and } \Delta \cup \{\psi[c_j/x_i]\} \vdash \neg \chi.$ May assume that c_j does *not* occur in χ (since $\vdash (\chi \rightarrow (\neg \chi \rightarrow \theta))$ for *any* sentence θ).

By DT,
$$\Delta \vdash (\psi[c_j/x_i] \rightarrow \chi)$$

and $\Delta \vdash (\psi[c_j/x_i] \rightarrow \neg \chi)$.

Then also

 $\Delta \vdash (\psi \rightarrow \chi)$ and $\Delta \vdash (\psi \rightarrow \neg \chi)$ (Exercise Sheet # 4 (2)(ii))

Lecture 13 - 6/10

By
$$\forall, \ \Delta \vdash \forall x_i(\psi \to \chi)$$

and $\Delta \vdash \forall x_i(\psi \to \neg \chi)$
(note that $x_i \notin \text{Free}(\delta)$ for any $\delta \in \Delta \subseteq \text{Sent}(\mathcal{L})$).

Now: $\vdash (\forall x_i(A \rightarrow B) \rightarrow (\exists x_i A \rightarrow B))$ for any $A, B \in Form(\mathcal{L})$ with $x_i \notin Free(B)$ (Exercise Sheet $\ddagger 4$, (2)(i))

$$\begin{split} \mathsf{MP} &\Rightarrow \Delta \vdash (\exists x_i \psi \rightarrow \chi) \\ \mathsf{and} \ \Delta \vdash (\exists x_i \psi \rightarrow \neg \chi) \\ (\chi, \neg \chi \in \mathsf{Sent}(\mathcal{L}), \text{ so } x_i \not\in \mathsf{Free}(\chi)) \end{split}$$

By hypothesis, $\Delta \vdash \exists x_i \psi$ \Rightarrow by MP, $\Delta \vdash \chi$ and $\Delta \vdash \neg \chi$ contradicting consistency of Δ .

□13.6

Lecture 13 - 7/10

Proof of 13.4:

Let Δ be any consistent set of sentences.

to show: Δ has a model assuming that any maximal consistent, witnessing set of sentences has a model.

By 13.3(a), Δ' is consistent and does not contain any c_{2m+1} .

Let $\phi_1, \phi_2, \phi_3, \ldots$ be an enumeration of Sent $(\mathcal{L}' \cup \{c_1, c_3, c_5, \ldots\})$.

Construct finite sets \subseteq Sent($\mathcal{L}' \cup \{c_1, c_3, c_5, \ldots\}$)

 $\Gamma_0\subseteq\Gamma_1\subseteq\Gamma_2\subseteq\ldots$

such that $\Delta' \cup \Gamma_n$ is consistent for each $n \ge 0$ as follows:

Lecture 13 - 8/10

Let $\Gamma_0 := \emptyset$.

If Γ_n has been constructed let

$$\begin{split} \Gamma_{n+1/2} &:= \begin{cases} \Gamma_n \cup \{\phi_{n+1}\} & \text{if } \Delta' \cup \Gamma_n \cup \{\phi_{n+1}\} \\ & \text{is consistent} \\ \Gamma_n \cup \{\neg \phi_{n+1}\} & \text{otherwise} \end{cases} \\ \Rightarrow \Gamma_{n+1/2} \text{ is consistent (Lemma 13.5)} \end{split}$$

Now, if $\neg \phi_{n+1} \in \Gamma_{n+1/2}$ or if ϕ_{n+1} is *not* of the form $\exists x_i \psi$, let $\Gamma_{n+1} := \Gamma_{n+1/2}$.

If not, i.e. if $\phi_{n+1} = \exists x_i \psi \in \Gamma_{n+1/2}$ then $\Delta' \cup \Gamma_{n+1/2} \vdash \exists x_i \psi$.

Choose *m* large enough such that c_{2m+1} does not occur in any formula in $\Delta' \cup \Gamma_{n+1/2} \cup \{\psi\}$ (possible since $\Gamma_{n+1/2} \cup \{\psi\}$ is finite and Δ' has only even constants).

Lecture 13 - 9/10

Let $\Gamma_{n+1} := \Gamma_{n+1/2} \cup \{\psi[c_{2m+1}/x_i]\}$ \Rightarrow by Lemma 13.6, Γ_{n+1} is consistent.

Let $\Gamma := \Delta' \cup \bigcup_{n \ge 0} \Gamma_n$.

 \Rightarrow Γ is maximal consistent (as in Propositional Calculus) and Γ is witnessing (by construction).

By assumption, Γ has a model, say \mathcal{A} .

 \Rightarrow in particular, $\Gamma \models \delta$ for any $\delta \in \Delta'$

 \Rightarrow by Lemma 13.3(b), Δ has a model

□13.4

So to prove CT it remains to show: Every maximal consistent witnessing set Δ of sentences has a model.

Lecture 13 - 10/10