14. Applications of Gödel's Completeness Theorem

14.1 Compactness Theorem for Predicate Calculus

Let \mathcal{L} be a first-order language and let $\Gamma \subseteq Sent(\mathcal{L})$.

Then Γ has a model iff every finite subset of Γ has a model.

Proof: as for Propositional Calculus – Exercise sheet # 4, (5)(ii).

14.2 Example

Let $\Gamma \subseteq Sent(\mathcal{L})$. Assume that for every $N \geq 1$, Γ has a model whose domain has at least N elements.

Then Γ has a model with an infinite domain.

Lecture 15 - 1/9

Proof:

For each $n \geq 2$ let χ_n be the sentence

$$\exists x_1 \exists x_2 \cdots \exists x_n \bigwedge_{1 \le i < j \le n} \neg x_i \doteq x_j$$

 \Rightarrow for any \mathcal{L} -structure $\mathcal{A} = \langle A; \ldots \rangle$,

$$\mathcal{A} \models \chi_n \text{ iff } \#A \geq n$$

Let $\Gamma' := \Gamma \cup \{\chi_n \mid n \geq 1\}.$

If $\Gamma_0 \subseteq \Gamma'$ is finite,

let N be maximal with $\chi_N \in \Gamma_0$.

By hypothesis, $\Gamma \cup \{\chi_N\}$ has a model.

 \Rightarrow Γ_0 has a model

(note that $\vdash \chi_N \to \chi_{N-1} \to \chi_{N-2} \to \ldots$)

 \Rightarrow By the Compactness Theorem 14.1, Γ' has a model, say $\mathcal{A} = \langle A; \ldots \rangle$

$$\Rightarrow$$
 $A \models \chi_n$ for all $n \Rightarrow \#A = \infty$

Lecture 15 - 2/9

14.3 The Löwenheim-Skolem Theorem

Let $\Gamma \subseteq Sent(\mathcal{L})$ be consistent.

Then Γ has a model with a countable domain.

Proof:

This follows from the proof of the Completeness Theorem:

The **term model** constructed there was countable, because there are only countably many closed terms.

14.4 Definition

(i) Let A be an \mathcal{L} -structure.

Then the \mathcal{L} -theory of \mathcal{A} is

$$\mathsf{Th}(\mathcal{A}) := \{ \phi \in \mathsf{Sent}(\mathcal{L}) \mid \mathcal{A} \models \phi \},\$$

the set of all \mathcal{L} -sentences true in \mathcal{A} .

Note: Th(\mathcal{A}) is maximal consistent.

(ii) If \mathcal{A} and \mathcal{B} are \mathcal{L} -structures with $\mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$ then \mathcal{A} and \mathcal{B} are called **elementarily** equivalent (in symbols: $\mathcal{A} \equiv \mathcal{B}$).

Lecture 15 - 3/9

14.5 Remark

Let $\Gamma \subseteq Sent(\mathcal{L})$ be any set of \mathcal{L} -sentences. Then TFAE:

- (i) Γ is strongly maximal consistent (i.e. for each \mathcal{L} -sentence ϕ , $\phi \in \Gamma$ of $\neg \phi \in \Gamma$)
- (ii) $\Gamma = \text{Th}(A)$ for some L-structure A

Proof:

(i) \Rightarrow (ii): Completeness Theorem

Rest: clear.

Note that Γ is maximal consistent if and only if Γ has models, and, for any two models \mathcal{A} and \mathcal{B} , $\mathcal{A} \equiv \mathcal{B}$.

Lecture 15 - 4/9

П

A worked example: Dense linear orderings without endpoints

Let $\mathcal{L} = \{<\}$ be the language with just one binary predicate symbol '<',

and let Γ be the \mathcal{L} -theory of dense linear orderings without endpoints (cf. Example 10.8) consisting of the axioms ψ_1, \ldots, ψ_4 :

$$\psi_1: \forall x \forall y ((x < y \lor x \doteq y \lor y < x) \\ \land \neg ((x < y \land x \doteq y) \lor (x < y \land y < x)))$$

$$\psi_2: \forall x \forall y \forall z (x < y \land y < z) \rightarrow x < z)$$

$$\psi_3: \forall x \forall z (x < z \rightarrow \exists y (x < y \land y < z))$$

 ψ_4 : $\forall y \exists x \exists z (x < y \land y < z)$

14.6 (a) There are many Examples

 $\langle A; < \rangle$ where A is: \mathbb{Q} , \mathbb{R} , (0,1), $(0,1) \cup (2,3)$, $\mathbb{R} \setminus \{0\}$, $[\sqrt{2}, \pi] \cap \mathbb{Q}$, ... or $\mathbb{Z} \times \mathbb{R}$ with lexicographic order: $(a,b) < (c,d) \Leftrightarrow a < c$ or (a=c & b < d)

(b) ... and non-examples [0,1], \mathbb{Z} , $\mathbb{R} \setminus (0,1)$, or $\mathbb{R} \times \mathbb{Z}$ with lexicographic ordering

Lecture 15 - 5/9

14.7 Theorem

Let Γ be the theory of dense linear orderings without endpoints, and let $\mathcal{A} = \langle A; <_{\mathcal{A}} \rangle$ and $\mathcal{B} = \langle B; <_{\mathcal{B}} \rangle$ be two countable models.

Then A and B are isomorphic, i.e. there is an order preserving bijection between A and B.

Proof: Note: A and B are infinite. Choose an enumeration (no repeats)

$$A = \{a_1, a_2, a_3, \ldots\}$$

 $B = \{b_1, b_2, b_3, \ldots\}$

Define $\phi: A \to B$ recursively s.t. for all n:

$$(\star_n)$$
 for all $i, j \leq n$: $\phi(a_i) <_{\mathcal{B}} \phi(a_j) \Leftrightarrow a_i <_{\mathcal{A}} a_j$

Suppose ϕ has been defined on $\{a_1, \ldots, a_n\}$ satisfying (\star_n) .

Let $\phi(a_{n+1}) = b_m$, where m > 1 is minimal s.t.

for all $i \leq n$: $b_m <_{\mathcal{B}} \phi(a_i) \Leftrightarrow a_{n+1} <_{\mathcal{A}} a_i$,

i.e. the position of $\phi(a_{n+1})$ relative to $\phi(a_1),\ldots,\phi(a_n)$

is the same as that of a_{n+1} relative to a_1, \ldots, a_n

(possible as $A, B \models \Gamma$).

$$\Rightarrow$$
 (\star_{n+1}) holds for a_1, \dots, a_{n+1}

 $\Rightarrow \phi$ is injective

And ϕ is surjective, by minimality of m. \Box

Lecture 15 - 7/9

14.8 Corollary

Γ is maximal consistent

Proof:

to show: Th(A) = Th(B) for any $A, B \models \Gamma$ (by Remark 14.5)

By the Theorem of Löwenheim-Skolem (14.3), $\text{Th}(\mathcal{A})$ and $\text{Th}(\mathcal{B})$ have countable models, say \mathcal{A}_0 and \mathcal{B}_0 .

$$\Rightarrow \mathsf{Th}(\mathcal{A}_0) = \mathsf{Th}(\mathcal{A}) \text{ and } \mathsf{Th}(\mathcal{B}_0) = \mathsf{Th}(\mathcal{B})$$

Theorem 14.7 \Rightarrow \mathcal{A}_0 and \mathcal{B}_0 are isomorphic

$$\Rightarrow \mathsf{Th}(\mathcal{A}_0) = \mathsf{Th}(\mathcal{B}_0)$$

$$\Rightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$$

Lecture 15 - 8/9

14.9 Corollary

$$\mathsf{Th}(\langle \mathbb{Q}; < \rangle) = \mathsf{Th}(\langle \mathbb{R}; < \rangle).$$

Recall that \mathbb{R} is **Dedekind complete**:

for any subsets $A, B \subseteq \mathbb{R}$ with A' < B' (i.e. a < b for any $a \in A, b \in B$) there is $c \in \mathbb{R}$ with $A' \le c' \le B$.

but Q is **not** Dedekind complete:

take
$$A = \{x \in \mathbb{Q} \mid x < \pi\}$$

 $B = \{x \in \mathbb{Q} \mid \pi < x\}$

Thus the Dedekind completness of \mathbb{R} is **not** a first-order property,

i.e. there is no $\Delta \subseteq Sent(\mathcal{L})$ such that for all \mathcal{L} -structures $\langle A; \langle \rangle$,

 $\langle A; < \rangle \models \Delta \text{ iff } \langle A; < \rangle \text{ is Dedekind complete.}$

Lecture 15 - 9/9